Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy

Li Xiang Wu De-Wei Wang Xi Miao Qiang Chen Kun Yang Chun-Yan

Citation:

A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy

Li Xiang, Wu De-Wei, Wang Xi, Miao Qiang, Chen Kun, Yang Chun-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The entangled state of continuous variables of microwave frequency is an important resource in the field of quantum. In order to apply it to quantum communication protocol and quantum radar, the entanglement between two spatially separated subsystems, namely dual-path entangled quantum microwave is needed. However, for the circuit that generates the entangled quantum microwave, there is no suitable method to indicate whether the quality of the entangled microwave signal is good or not. Aiming at this problem, we put forward a method of evaluating the quality of dual-path entangled quantum microwave signals generated based on von Neumann entropy. The origin of the entangled quantum microwave is that vacuum state signals are transformed into squeezed state signals in driven pump, so in this paper we use a two-mode squeezed vacuum state to describe the formation of dual-path entangled quantum microwave signal, thus providing the function relation between the photon number and the squeezed parameter. In a communication system, the signal-noise ratio is usually used to express the reliability of system. Entropy is a measure of disorder degree in information. If both of them can be made the analogy, the entropy is used to evaluate the proportion of entangled state signals, the quality of original signals will be evaluated and the relationship among the entropy and squeezed parameter and the photon number will be analyzed. The simulation results show that the photon number in the entangled quantum microwave signal is determined by the squeezed parameter, and there is an index change with the square rule between them. Entropy decreases with the increase of squeezed parameter: its minimum value is 0, and its maximum value can be found from 0.9 to 1. The slope of curve is steep near the maximum, which reflects that the influence of squeezed parameter on the degree of entanglement is obvious, and that the range of optimal value choices in squeezed parameter is very narrow. The optimal value of squeezed parameter is dependent on photon number; it increases with the increase of the photon number. Entropy tends to decrease smoothly with the increase of squeezed parameter and it approximately has a negative exponent relation. The photon number in an actual signal is limited, so the limit value of entropy is estimated to be about 65%. The research shows that the quality of the entangled microwave signal can be improved by choosing appropriate squeezed parameter in different circuits that generate dual-path entangled quantum microwave signals for meeting the actual needs. Therefore, the research can provide the method of choosing the parameters of dual-path entangled quantum microwave circuit and improve the availability of system.
      Corresponding author: Wu De-Wei, wudewei74609@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61573372).
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev 47 777

    [3]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys 73 565

    [4]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys 77 513

    [5]

    Clarke J, Wilhelm F K 2008 Nature. 453 1031

    [6]

    Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P, Zheng D N 2013 Chin. Phys. B 22 060309

    [7]

    Nakamura Y, Yamamoto T {2012 IEEE Photon. 5 0701406

    [8]

    Pechal M, Huthmacher L, Eichler C, Zeytinolu S, Abdumalikov A A, Berger J S, Wallraff A, Filipp S {2014 Phys. Rev. X 4 041010

    [9]

    Ware M E 2015 Ph. D. Dissertation (Tuscaloosa: University of Alabama)

    [10]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nature Phys. 11 713

    [11]

    Wallra A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [12]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nature Phys 6 772

    [13]

    Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, Malley P O, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, Martinis J M 2012 Nature Phys. 8 719

    [14]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602

    [15]

    Liu X, Liao Q H, Fang G Y, Wang Y Y, Liu S T 2014 Chin. Phys. B 23 020311

    [16]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J Girvin S M, Devoret M H 2010 Nature 465 64

    [17]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 222603

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Trif M, Simon P {2015 Phys. Rev. B 92 014503

    [21]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [22]

    Menzel E P 2013 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

    [23]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [24]

    Eder P 2012 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev 47 777

    [3]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys 73 565

    [4]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys 77 513

    [5]

    Clarke J, Wilhelm F K 2008 Nature. 453 1031

    [6]

    Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P, Zheng D N 2013 Chin. Phys. B 22 060309

    [7]

    Nakamura Y, Yamamoto T {2012 IEEE Photon. 5 0701406

    [8]

    Pechal M, Huthmacher L, Eichler C, Zeytinolu S, Abdumalikov A A, Berger J S, Wallraff A, Filipp S {2014 Phys. Rev. X 4 041010

    [9]

    Ware M E 2015 Ph. D. Dissertation (Tuscaloosa: University of Alabama)

    [10]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nature Phys. 11 713

    [11]

    Wallra A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [12]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nature Phys 6 772

    [13]

    Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, Malley P O, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, Martinis J M 2012 Nature Phys. 8 719

    [14]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602

    [15]

    Liu X, Liao Q H, Fang G Y, Wang Y Y, Liu S T 2014 Chin. Phys. B 23 020311

    [16]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J Girvin S M, Devoret M H 2010 Nature 465 64

    [17]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 222603

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Trif M, Simon P {2015 Phys. Rev. B 92 014503

    [21]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [22]

    Menzel E P 2013 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

    [23]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [24]

    Eder P 2012 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

  • [1] HU Fei-fei, LI Si-ying, ZHU Shun, HUANG Yu, LIN Xu-bin, ZHANG Si-tuo, FAN Yun-ru, ZHOU Qiang, LIU Yun. Multiwavelength Quantum Correlated Photon Pair Generation for Quantum Entanglement Key Distribution. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241274
    [2] Lai Hong. Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states. Acta Physica Sinica, 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [3] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting. Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term. Acta Physica Sinica, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [5] Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang. Compression of correlation time of chirped biphotons by binary phase modulation. Acta Physica Sinica, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [6] Wang Xiang-Lin, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Chen Kun, Fang Guan. An approach to selecting the optimal squeezed parameter for generating path entangled microwave signal. Acta Physica Sinica, 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [7] Hu Yao-Hua. Entropy exchange and entanglement in the multi-photon J-C model of a moving atom. Acta Physica Sinica, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [8] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [9] Lu Dao-Ming. The quantum properties of three-parameter two-mode squeezed number state. Acta Physica Sinica, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [10] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [11] Liu Xiao-Jian, Zhao Ming-Zhuo, Liu Yi-Man, Zhou Bing-Ju, Peng Zhao-Hui. Preparation and control of optimal entropy squeezing states for the moving atom entangment with the field under the intensity dependent coupling. Acta Physica Sinica, 2010, 59(5): 3227-3235. doi: 10.7498/aps.59.3227
    [12] Zhao Dong-Mei, Li Zhi-Gang, Guo Yan-Qiang, Li Gang, Wang Jun-Min, Zhang Tian-Cai. Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold. Acta Physica Sinica, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [13] Kang Dong-Peng, Ren Min, Ma Ai-Qun, Qian Yan, Liu Zheng-Jun, Liu Shu-Tian. Entropy squeezing of the optical field in k-photon Jaynes-Cummings model. Acta Physica Sinica, 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [14] Liu Xiao-Juan, Zhou Bing-Ju, Fang Mao-Fa, Zhou Qing-Ping. Information entropy squeezing of the atom of an arbitrary initial state via the two-photon process. Acta Physica Sinica, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
    [15] Tan Hua-Tang, Gan Zhong-Wei, Li Gao-Xiang. Entanglement for excitons in three quantum dots in a cavity coupled to a broadband squeezed vacuum. Acta Physica Sinica, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [16] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [17] Zhou Qing-Chun, Zhu Shi-Ning. Entanglement of a Λ-type three-level atom with a single-mode field initially in the number state. Acta Physica Sinica, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [18] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [19] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [20] GUO GUANG-CAN, CHAI JIN-HUA. GENERATION OF PHOTON-NUMBER SQUEEZED STATE BY OPTICALLY PUMPED THREE-LEVEL ATOMIC SYSTEM. Acta Physica Sinica, 1991, 40(6): 912-922. doi: 10.7498/aps.40.912
Metrics
  • Abstract views:  5691
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2015
  • Accepted Date:  17 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回