Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system

Huang Xiang-Dong Zhang Hao-Jie Liu Kun Ma Chun-Yu Liu Tie-Gen

Citation:

High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system

Huang Xiang-Dong, Zhang Hao-Jie, Liu Kun, Ma Chun-Yu, Liu Tie-Gen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In an optical fiber perimeter security system, due to the fact that a large quantity of samples are collected in the process of data acquisition, this heavy data burden inevitably degrades the efficiency and accuracy of intrusion recognition. Hence, it is urgent to remove the redundancy of the collected data records, which essentially requires to describe event features in a concise and proper way. In this paper, we propose a synthesized feature based intrusion recognition method, which is especially suitable to describing the fiber intrusion vibration signals with both wide bandwidth and high nonstationarity. Firstly, the all-phase filter bank characterized by large sidelobe attenuation and high flexibility of coefficient configuration, is employed to parallelly divide the input signal into multiple frequency channels, from which the power values can be accurately calculated. Secondly, the crossing rate of the input signal is combined with these power values to construct a synthetical feature vector, in which both the time-domain information and frequency-domain information are incorporated together. Finally, these synthetical feature vectors are fed into a radial-basis-function network based classifier to recognize 4 common intrusions (climbing, knocking, waggling and cutting). Essentially, the high efficiency of our proposed scheme lies in the parallel pipeline mode of the configurable filter bank and simple calculation of features, which facilitates speeding up the intrusion recognition. The high accuracy of our proposed scheme lies in two aspects: 1) the all-phase filter bank possesses small inter-channel interference, which helps to reduce the inter-coupling between output power values; 2) the synthesis of both frequency-domain information and time-domain information ensures the completeness of feature description. Experiments show that the sensing range of the proposed scheme can reach 2.25 km. Moreover, compared with the empirical mode decomposition based method, the proposed method not only improves the precision, but also significantly speeds up the recognition.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    [1]

    Rangaswamy S, van Doorn E 2012 US Patent 8 232 878

    [2]

    Girao P M B S, Postolache O A, Faria J A B, Pereira J M C D 2001 IEEE Sens. J. 1 322

    [3]

    Gong H, Song H, Zhang S 2014 IEEE Sens. J. 14 777

    [4]

    Yu S Y, Sun S L 2008 Laser Infrared 34 345 (in Chinese) [于胜云, 孙胜利 2008 激光与红外 34 345]

    [5]

    Fan Z M 2008 China Security Protection 3 42 (in Chinese) [樊治敏 2008 中国安防 3 42]

    [6]

    Sun Q Z, Liu D M, Liu H R, He Y, Yuan J G 2006 Proc. SPIE 6344 63440K

    [7]

    Sun Q Z, Liu D M, Liu H R, Shum P 2007 Proc. SPIE 6781 67814D

    [8]

    Xie S R, Zhang M, Lai S R, Liao Y B 2010 Proc. SPIE 7677 76770A

    [9]

    Jiang L H, Yang R Y 2012 J. Comput. 7 1453

    [10]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 IEEE J. Lightw. Technol. 23 2081

    [11]

    Xie S R, Zou Q L, Wang L W, Zhang M, Li Y H, Liao Y B 2011 IEEE J. Lightw. Technol. 29 362

    [12]

    Huang X D, Yu J, Liu K, Liu T G, Chen Q N 2014 IEEE Photon. Technol. Lett. 26 1956

    [13]

    Liu L, Sun W, Zhou Y, Li Y, Zheng J, Ren B T 2014 Pattern Recognition (Berlin Heidelberg: Springer) pp595-603

    [14]

    Mahmoud S S, Visagathilagar Y, Katsifolis 2012 Photon. Sens. 2 225

    [15]

    Liu K, Tian M, Liu T G, Jiang J F, Ding Z Y, Chen Q N, Ma C Y, He C, Hu H F, Zhang X Z 2015 IEEE J. Lightw. Technol. 33 4885

    [16]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [17]

    Huang X D, Jing S X, Wang Z H, Xu Y, Zheng Y Q 2015 IEEE Trans. Signal Process. 64 1173

    [18]

    Wang Z H, Huang X D 2009 All Phase Spectrum Analysis and Filtering Technology of Digital Signal (Beijing: Publishing House of Electronics Industry) pp14-31 (in Chinese) [王兆华, 黄翔东 2009 数字信号全相位谱分析与滤波技术 (北京:电子工业出版社) 第14-31页]

    [19]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Chen Q N 2016 IEEE Photon. J. 8 1

    [20]

    Huan H X, Hien T T H, Tue H H 2011 IEEE Trans. Neural Netw. 22 982

    [21]

    Lyons W B, Ewald H, Lewis E 2002 J. Mater. Process. Technol. 127 23

    [22]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Tian M 2016 IEEE J. Lightw. Technol. 34 5049

  • [1]

    Rangaswamy S, van Doorn E 2012 US Patent 8 232 878

    [2]

    Girao P M B S, Postolache O A, Faria J A B, Pereira J M C D 2001 IEEE Sens. J. 1 322

    [3]

    Gong H, Song H, Zhang S 2014 IEEE Sens. J. 14 777

    [4]

    Yu S Y, Sun S L 2008 Laser Infrared 34 345 (in Chinese) [于胜云, 孙胜利 2008 激光与红外 34 345]

    [5]

    Fan Z M 2008 China Security Protection 3 42 (in Chinese) [樊治敏 2008 中国安防 3 42]

    [6]

    Sun Q Z, Liu D M, Liu H R, He Y, Yuan J G 2006 Proc. SPIE 6344 63440K

    [7]

    Sun Q Z, Liu D M, Liu H R, Shum P 2007 Proc. SPIE 6781 67814D

    [8]

    Xie S R, Zhang M, Lai S R, Liao Y B 2010 Proc. SPIE 7677 76770A

    [9]

    Jiang L H, Yang R Y 2012 J. Comput. 7 1453

    [10]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 IEEE J. Lightw. Technol. 23 2081

    [11]

    Xie S R, Zou Q L, Wang L W, Zhang M, Li Y H, Liao Y B 2011 IEEE J. Lightw. Technol. 29 362

    [12]

    Huang X D, Yu J, Liu K, Liu T G, Chen Q N 2014 IEEE Photon. Technol. Lett. 26 1956

    [13]

    Liu L, Sun W, Zhou Y, Li Y, Zheng J, Ren B T 2014 Pattern Recognition (Berlin Heidelberg: Springer) pp595-603

    [14]

    Mahmoud S S, Visagathilagar Y, Katsifolis 2012 Photon. Sens. 2 225

    [15]

    Liu K, Tian M, Liu T G, Jiang J F, Ding Z Y, Chen Q N, Ma C Y, He C, Hu H F, Zhang X Z 2015 IEEE J. Lightw. Technol. 33 4885

    [16]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [17]

    Huang X D, Jing S X, Wang Z H, Xu Y, Zheng Y Q 2015 IEEE Trans. Signal Process. 64 1173

    [18]

    Wang Z H, Huang X D 2009 All Phase Spectrum Analysis and Filtering Technology of Digital Signal (Beijing: Publishing House of Electronics Industry) pp14-31 (in Chinese) [王兆华, 黄翔东 2009 数字信号全相位谱分析与滤波技术 (北京:电子工业出版社) 第14-31页]

    [19]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Chen Q N 2016 IEEE Photon. J. 8 1

    [20]

    Huan H X, Hien T T H, Tue H H 2011 IEEE Trans. Neural Netw. 22 982

    [21]

    Lyons W B, Ewald H, Lewis E 2002 J. Mater. Process. Technol. 127 23

    [22]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Tian M 2016 IEEE J. Lightw. Technol. 34 5049

  • [1] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [2] Li Kai-Yan, Zhao Xing-Qun, Sun Xiao-Han, Wan Sui-Ren. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system. Acta Physica Sinica, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [3] Liu Chao, Pei Li, Wu Liang-Ying, Wang Yi-Qun, Weng Si-Jun, Yu Shao-Wei. Analysis of all fiber acousto-optic tunable filter based on superimposed fiber Bragg gratings. Acta Physica Sinica, 2015, 64(17): 174207. doi: 10.7498/aps.64.174207
    [4] Yin Bin, Bai Yun-Long, Qi Yan-Hui, Feng Su-Chun, Jian Shui-Sheng. Study on tapered chirped fiber grating filter. Acta Physica Sinica, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [5] Zhang Bin, Pan Xue-Feng, Tao Wei-Dong. Study on a novel optical filter by internal reflection and optical rotation. Acta Physica Sinica, 2011, 60(5): 054214. doi: 10.7498/aps.60.054214
    [6] Chen He-Ming, Meng Qing. Design of high efficiency photonic crystal terahertz filter. Acta Physica Sinica, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [7] Hou Wei, Zhang Da-Quan, Qian Zhong-Hua, Feng Guo-Lin. Extremely low temperature and its composite index based on stochastically re-sorting detrended fluctuation analysis. Acta Physica Sinica, 2011, 60(10): 109203. doi: 10.7498/aps.60.109203
    [8] Zhang Pan-Zheng, Fan Wei, Wang Xiao-Chao, Lin Zun-Qi. All-fiber ultrashort Yb3+ doped fiber laser self-started by spectral filter. Acta Physica Sinica, 2011, 60(2): 024206. doi: 10.7498/aps.60.024206
    [9] Jiang Wei-Wei, Fan Lin-Yong, Zhao Rui-Feng, Wei Yan, Pei Li, Jian Shui-Sheng. Comb-filter based on two core fiber coupler and its CO2 laser trimming. Acta Physica Sinica, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [10] Zhu Zhi-Yu, Yang Guan-Xiao. Stiefel manifold particle filtering. Acta Physica Sinica, 2010, 59(12): 8316-8321. doi: 10.7498/aps.59.8316
    [11] Ning Xiao-Lei, Wang Hong-Li, Zhang Qi, Chen Lian-Hua. Interval diffracted particle filter. Acta Physica Sinica, 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [12] Xue Hui, Zheng Zheng-Rong, Gu Pei-Fu, Zhang Jin-Long, Shen Wei-Dong, Chen Hai-Xing. A novel filter with low angle effect. Acta Physica Sinica, 2009, 58(6): 3983-3987. doi: 10.7498/aps.58.3983
    [13] Ma Jian-Yong, Liu Shi-Jie, Wei Chao-Yang, Xu Cheng, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Design of reflection resonant grating filters. Acta Physica Sinica, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [14] Du Zheng-Cong, Tang Bin, Li Ke. The hybrid annealed particle filter. Acta Physica Sinica, 2006, 55(3): 999-1004. doi: 10.7498/aps.55.999
    [15] Dong Xiao-Wei, Pei-Li, Jian Shui-Sheng. Add/drop channel filter based on fiber-Bragg-grating-assisted coupler fabricated by asymmetric fused taper technology. Acta Physica Sinica, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [16] Cao Hui, Sun Jun-Qiang, Zhang Xin-Liang, Xiao Ling-Yan, Huang De-Xiu. A novel design methodology for superstructure fiber Bragg grating comb-filter. Acta Physica Sinica, 2004, 53(9): 3077-3082. doi: 10.7498/aps.53.3077
    [17] Liu Hai-Wen, Sun Xiao-Wei, Li Zheng-Fan, Qian Rong, Zhou Min. A low-pass filter of wide stopband with a novel dual-layer fractal photonic band gap structure. Acta Physica Sinica, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [18] GU BEN-YUAN, DONG BI-ZHEN, ZHENG SHI-HAI, YANG GUO-ZHEN. SPACE-INVARIANT AND ROTATION-INVARIANT IN A GIVEN ANGLE RANGE PATTERN RECOGNITION AND THEIR FILTER DESIGN. Acta Physica Sinica, 1985, 34(6): 760-765. doi: 10.7498/aps.34.760
    [19] . Acta Physica Sinica, 1937, 3(1): 39-50. doi: 10.7498/aps.3.39
    [20] . Acta Physica Sinica, 1936, 2(1): 76-105. doi: 10.7498/aps.2.76
Metrics
  • Abstract views:  6491
  • PDF Downloads:  241
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2016
  • Accepted Date:  29 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回