Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Superconducting gap of quasi-one-dimensional Cr-based superconductor RbCr3As3

Li Qing Wang Min-Xiang Liu Tong Mu Qing-Ge Ren Zhi-An Li Shi-Yan

Citation:

Superconducting gap of quasi-one-dimensional Cr-based superconductor RbCr3As3

Li Qing, Wang Min-Xiang, Liu Tong, Mu Qing-Ge, Ren Zhi-An, Li Shi-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the discovery of high-temperature superconductivity in cuprates, finding more unconventional superconductors and understanding their superconducting pairing mechanism has been an important theme in condensed matter physics. Recently, ternary Cr-based superconductors A2Cr3As3 (A=K, Rb, Cs) and ACr3As3 (A=K, Rb) were reported, which own quasi-one-dimensional crystal structure, containing[(Cr3As3)-] linear chains. A2Cr3As3 belongs to P6m2 space group, and ACr3As3 crystallizes in a centrosymmetric structure with the space group P63/m. Many experiments, such as nuclear magnetic resonance, London penetration depth, show that A2Cr3As3 is an unconventional superconductor. However, these A2Cr3As3 compounds are extremely unstable in air. Here, we study the superconducting gap of the air-stable RbCr3As3 single crystal, using ultralow-temperature thermal conductivity measurement. The resistivity of RbCr3As3 single crystal shows a superconducting transition temperature Tczero at 6.6 K. The normal-state resistivity data from 20 K to 8 K are fitted to (T)=0 + AT2, which gives a residual resistivity of 0=781 cm. Then, the thermal conductivity of RbCr3As3 single crystal is measured at temperature down to 80 mK and in magnetic fields up to 9 T. In zero field, residual linear term 0/T=7.5 WK-2cm-1 is observed, which is about 24% of its normal-state value, suggesting nodes in the superconducting gap. At low field, the 0/T of RbCr3As3 shows a relatively faster field dependence than single-gap s-wave superconductors. These results reveal that RbCr3As3 is likely an unconventional superconductor with superconducting gap nodes, although the exact superconducting gap symmetry and structure for this quasi-one-dimensional superconductor needs further investigation.
      Corresponding author: Li Shi-Yan, shiyan_li@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant Nos. 2016YFA0300503, 2015CB921401), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630248), and the National Natural Science Foundation of China (Grant Nos. 11474339, 11774402).
    [1]

    Norman M R 2011 Science 322 196

    [2]

    Voit J 1994 Rep. Prog. Phys. 57 977

    [3]

    Grner G 1988 Rev. Mod. Phys. 60 1129

    [4]

    Lee I J, Brown S E, Clark W G, Strouse M J, Naughton M J, Kang W, Chaikin P M 2001 Phys. Rev. Lett. 88 017004

    [5]

    Sepper O, Lebed A G 2013 Phys. Rev. B 87 100511

    [6]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [7]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [8]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 16

    [9]

    Zhou Y, Cao C, Zhang F C 2017 Sci. Bull. 62 208

    [10]

    Jiang H, Cao G H, Cao C 2015 Sci. Rep. 5 16054

    [11]

    Zhi H Z, Imai T, Ning F L, Bao J K, Cao G H 2015 Phys. Rev. Lett. 114 147004

    [12]

    Tang Z T, Bao J K,Liu Y, Bai H, Jiang H, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 543

    [13]

    Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 180404

    [14]

    Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F, Ren Z A 2017 Phys. Rev. B 96 140504

    [15]

    Liu T, Mu Q G, Pan B J, Yu J, Ruan B B, Zhao K, Chen G F, Ren Z A 2017 Europhys. Lett. 120 27006

    [16]

    Shakeripour H, Petrovic C, Taillefer L 2009 New J. Phys. 11 055065

    [17]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [18]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501

    [19]

    Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005

    [20]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003

    [21]

    Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y, Ishiguro T 2002 Phys. Rev. Lett. 88 227004

    [22]

    Lowell J, Sousa J B 1970 J. Low. Temp. Phys. 3 65

    [23]

    Willis J, Ginsberg D 1976 Phys. Rev. B 14 1916

    [24]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003

    [25]

    Reid J P, Tanatar M A, Fecteau A J, Gordon R T, de Cotret S R, Leyraud N D, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001

    [26]

    Lee I J, Chow D S, Clark W G, Strouse M J, Naughton M J, Chaikin P M, Brown S E 2003 Phys. Rev. B 68 092510

    [27]

    Belin S, Behnia K 1997 Phys. Rev. Lett. 79 2125

    [28]

    Luke G M, Rovers M T, Fukaya A, Gat I M, Larkin I,Savici A, Uemura Y J, Kojima K M, Chaikin P M, Lee I J, Naughton M J 2003 Physica B 326 378

    [29]

    Yonezawa S, MaenoY, Bechgaard K, Jrome D 2012 Phys. Rev. B 85 140520

    [30]

    Shimahara H 2000 Phys. Rev. B 61 R14936

    [31]

    Kuroki K, Arita R, Aoki H 2001 Phys. Rev. B 63 094509

    [32]

    Lebed A G 2012 Physica B 407 1803

  • [1]

    Norman M R 2011 Science 322 196

    [2]

    Voit J 1994 Rep. Prog. Phys. 57 977

    [3]

    Grner G 1988 Rev. Mod. Phys. 60 1129

    [4]

    Lee I J, Brown S E, Clark W G, Strouse M J, Naughton M J, Kang W, Chaikin P M 2001 Phys. Rev. Lett. 88 017004

    [5]

    Sepper O, Lebed A G 2013 Phys. Rev. B 87 100511

    [6]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [7]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [8]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 16

    [9]

    Zhou Y, Cao C, Zhang F C 2017 Sci. Bull. 62 208

    [10]

    Jiang H, Cao G H, Cao C 2015 Sci. Rep. 5 16054

    [11]

    Zhi H Z, Imai T, Ning F L, Bao J K, Cao G H 2015 Phys. Rev. Lett. 114 147004

    [12]

    Tang Z T, Bao J K,Liu Y, Bai H, Jiang H, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 543

    [13]

    Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 180404

    [14]

    Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F, Ren Z A 2017 Phys. Rev. B 96 140504

    [15]

    Liu T, Mu Q G, Pan B J, Yu J, Ruan B B, Zhao K, Chen G F, Ren Z A 2017 Europhys. Lett. 120 27006

    [16]

    Shakeripour H, Petrovic C, Taillefer L 2009 New J. Phys. 11 055065

    [17]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [18]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501

    [19]

    Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005

    [20]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003

    [21]

    Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y, Ishiguro T 2002 Phys. Rev. Lett. 88 227004

    [22]

    Lowell J, Sousa J B 1970 J. Low. Temp. Phys. 3 65

    [23]

    Willis J, Ginsberg D 1976 Phys. Rev. B 14 1916

    [24]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003

    [25]

    Reid J P, Tanatar M A, Fecteau A J, Gordon R T, de Cotret S R, Leyraud N D, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001

    [26]

    Lee I J, Chow D S, Clark W G, Strouse M J, Naughton M J, Chaikin P M, Brown S E 2003 Phys. Rev. B 68 092510

    [27]

    Belin S, Behnia K 1997 Phys. Rev. Lett. 79 2125

    [28]

    Luke G M, Rovers M T, Fukaya A, Gat I M, Larkin I,Savici A, Uemura Y J, Kojima K M, Chaikin P M, Lee I J, Naughton M J 2003 Physica B 326 378

    [29]

    Yonezawa S, MaenoY, Bechgaard K, Jrome D 2012 Phys. Rev. B 85 140520

    [30]

    Shimahara H 2000 Phys. Rev. B 61 R14936

    [31]

    Kuroki K, Arita R, Aoki H 2001 Phys. Rev. B 63 094509

    [32]

    Lebed A G 2012 Physica B 407 1803

  • [1] Yin Jia-Xin, Wang Qiang-Hua. Superconducting gap modulations: Are they from pair density waves or pair-breaking scattering?. Acta Physica Sinica, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [2] Wang Ju-Feng, Tian Ming-Yang, Du Hong-Jian, Ma Chuan-Xu, Wang Bing. Structural and superconducting properties of low-temperature ultrathin PbBi3 films. Acta Physica Sinica, 2022, 71(12): 127401. doi: 10.7498/aps.71.20220050
    [3] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [4] Lu Hong-Yan, Chen San, Liu Bao-Tong. Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [5] Jiang Ming-Bo, Wu Zhi-Xiong, Zhou Min, Huang Rong-Jin, Li Lai-Feng. Cryogenic thermoelectric properties of BiTe-based alloys and cryo-energy power generation. Acta Physica Sinica, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [6] Yu Hua-Ling. Abnormal minigap induced by superconducting proximity effects in a metallic film. Acta Physica Sinica, 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [7] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Fan Rong, Chen Xian-Hui, Cao Lie-Zhao. Thermal conductivity of two-energy-gap superconductor MgB2. Acta Physica Sinica, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [8] Zhao Yan-Li, Zheng Peng, Chen Zhao-Jia, Ren Qing-Bao, Xu Zhu-An, Jiao Zheng-Kuan, YJZhang, CKOng. . Acta Physica Sinica, 2002, 51(8): 1836-1840. doi: 10.7498/aps.51.1836
    [9] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [10] LIU BO, SHI CHAO-SHU, ZHOU DONG-FANG, QI ZE-MING, HU GUAN-QIN, TANG HONG-GAO. INFLUENCE OF Gd3+ AND Y3+-DOPING ON LOW TEMPERATURE THERMOLUMINESCENCE OF Pb WO_4. Acta Physica Sinica, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [11] DING SHI-YING, SHI KE-XIN, ZENG CHAO-YANG, YU ZHENG, SHI ZHI-XIANG, QIU LI. TIME DEPENDENT CRITICAL CURRENT AT ZERO FIELD FOR SINTERED Tl2Ba2Ca2Cu3Oy SUPERCONDUCTOR. Acta Physica Sinica, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [12] WANG QIANG, ZHANG XIAO-WEN, GU BING-LIN, TANG XIAO-FENG. LOW TEMPERATURE STABLE PHASES OF HIGH Tc SUPERCONDUCTOR YBa2Cu3Oz. Acta Physica Sinica, 1991, 40(6): 990-997. doi: 10.7498/aps.40.990
    [13] YU DAO-QI, PAN GUO-QIANG, ZHAO YONG, SUN SHI-FANG, CHEN ZU-YAO, ZHANG QI-RUI. CHARACTERISTICS OF THE LOW-TEMPERATURE RESISTIVITY OF GRANULAR SUPERCONDUCTOR Ba2YCu3O7-δ. Acta Physica Sinica, 1988, 37(6): 1048-1052. doi: 10.7498/aps.37.1048
    [14] WANG RUI-LAN, LI HONG-CHENG, GUAN WEI-YAN. DETERMINATION OF SUPERCONDUCTING ENERGY GAP OF HEAVILY DOPED Re THIN FILMS BY ELECTRON TUNNELING. Acta Physica Sinica, 1987, 36(12): 1643-1644. doi: 10.7498/aps.36.1643
    [15] WEI CHONG-DE, LUO XIAO-LAN, MENG XIAO-FAN. INHOMOGENEOUS GAP STATES IN NONEQUILIBRIUM SUPERCONDUCTING LEAD FILM. Acta Physica Sinica, 1982, 31(5): 699-703. doi: 10.7498/aps.31.699
    [16] CAO XIAO-WEN. AN EMPIRICAL CORRELATION BETWEEN SUPERCONDUCTING ENERGY GAPS 2△0 AND THE HALL COEFFICIENTS IN AMORPHOUS SUPERCONDUCTORS. Acta Physica Sinica, 1982, 31(2): 258-261. doi: 10.7498/aps.31.258
    [17] LIU FU-SUI. THE ENERGY GAP OF TWO TYPES OF SUPERCONDUCTOR. Acta Physica Sinica, 1978, 27(6): 758-760. doi: 10.7498/aps.27.758
    [18] . Acta Physica Sinica, 1975, 24(6): 452-453. doi: 10.7498/aps.24.452
    [19] WU HANG-SHENG. ENERGY GAP AND CRITICAL CURRENT OF A SUPER- CONDUCTING FILM WITH CURRENT FLOWING. Acta Physica Sinica, 1966, 22(7): 765-769. doi: 10.7498/aps.22.765
    [20] WU HANG-SHENG, JIANG JIAN-XUA, YING RUN-JIE. DEPENDENCE OF THE ENERGY GAP OF A SUPERCONDUCTING FILM ON MAGNETIC FIELD. Acta Physica Sinica, 1966, 22(7): 770-780. doi: 10.7498/aps.22.770
Metrics
  • Abstract views:  5929
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2018
  • Accepted Date:  08 October 2018
  • Published Online:  20 October 2019

/

返回文章
返回