Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on fission reaction rate induced by D-T neutron in depleted uranium shell

Han Zi-Jie Zhu Tong-Hua Lu Xin-Xin Qin Jian-Guo Wang Mei Jiang Li Yang Bo

Citation:

Experimental study on fission reaction rate induced by D-T neutron in depleted uranium shell

Han Zi-Jie, Zhu Tong-Hua, Lu Xin-Xin, Qin Jian-Guo, Wang Mei, Jiang Li, Yang Bo
PDF
HTML
Get Citation
  • Fission reaction rate is an important index for validating and checking the neutron transportation and fission power in nuclear engineering. The experimental data can be used in benchmark validation of cross sections, and in studying the correlation of fission power with the thickness of uranium sphere shell. There are five assemblies of depleted uranium shells used in this work, the inner radii of which are all fixed at 13.1 cm, while their outer radii are 18.1, 19.4, 23.35, 25.4 and 28.5 cm, respectively. The D-T neutron source is generated in the center of the assemblies, the yield of which is about 3 × 1010−4 × 1010 s–1. In horizontal plane across the center of the assemblies, the fission rates at positions along the radial direction are measured in the direction with 45° inclining with respect to the incident D+ beam. Due to the disturbance to assemblies and neutron field, the activation foil of uranium is a suitable choice rather than fission chamber or capture detector. The material of activation foil is the same as that in the experimental assemblies. Considering the accurate fission yield of 143Ce, the objective nuclides are selected. The total fission yield of 143Ce is contributed by 238U and a little 235U. For calculating the total fission yiled of 143Ce, the neutron energy range of 0−15 MeV is divided into eight subranges. By measuring the 293 keV gamma rays from the fission product 143Ce in activation foils with a TRANS-SPEC-DX100 HPGe detector, with a relative efficiency 40%, the fission rates and the trends at positions along the radial direction in the five assemblies are obtained based on the 143Ce fission product yield. The fission rate ranges from 5.28 × 10–29 to 7.58 × 10–28 sn-1·nuclide–1, with the relative uncertainty in a range from 6% to 11%. The Monte Carlo transport code MCNP5 and continuous energy cross section library ENDF/BV.8 are used for analyzing the fission rate distribution in the assemblies, and the experiemtal configuration, including the wall of the experimental hall is described in detail in the model. The calculated results are compared with the experimental ones and their agreement is found to be in an uncertainty range.
      Corresponding author: Qin Jian-Guo, stingg@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575165, 11775200) and the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB108006).
    [1]

    Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949

    [2]

    Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar

    [3]

    张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar

    Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar

    [4]

    刘国明, 程和平, 邵增 2012 原子能科学技术 46 272

    Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272

    [5]

    马纪敏, 刘永康 2012 原子能科学技术 46 437

    Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437

    [6]

    徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97

    Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97

    [7]

    Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar

    [8]

    马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar

    Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar

    [9]

    伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125

    Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125

    [10]

    Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91

    [11]

    Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar

    [12]

    Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar

    [13]

    Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar

    [14]

    Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar

    [15]

    Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar

    [16]

    Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar

    [17]

    Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar

    [18]

    Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar

    [19]

    Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar

    [20]

    冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar

    Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar

    [21]

    鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645

    Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645

    [22]

    Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar

    [23]

    Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar

    [24]

    刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar

    Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar

    [25]

    Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar

    [26]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar

  • 图 1  (a)贫化铀装置实物图; (b)蒙特卡罗模型5片活化探测器分布情况(45°方向中的1, 2, 3, 4, 5)

    Figure 1.  (a) Physical map of depleted uranium device; (b) distribution of five activation detectors in Monte Carlo Model 5 (1, 2, 3, 4, 5 in the direction of 45°).

    图 2  HPGe探测器测量的贫化铀活化探测器发射的γ

    Figure 2.  γ spectrum of depleted uranium activation detector, detected by using HPGe detector.

    图 3  五种模型中的裂变反应率分布情况

    Figure 3.  Fission reaction rate distribution for five models.

    图 4  五种模型不同测量点处的中子通量密度(蒙特卡罗模拟计算)

    Figure 4.  Neutron flux density at various measuring positions of five models (Monte Carlo simulation).

    图 5  贫化铀装置中不同位置裂变率C/E

    Figure 5.  C/E ratio of fission reaction rate for various measuring position in depleted uranium assembly.

    表 1  五种贫化铀球壳的外径及厚度

    Table 1.  Radius and thickness of depleted uranium shells.

    模型编号外半径Rout/cm厚度L/cm
    118.105.00
    219.406.30
    323.3510.25
    425.4012.30
    528.4515.35
    DownLoad: CSV

    表 2  五种模型中活化探测器的布放位置

    Table 2.  Position of activation detector in various models

    模型编号L/cm
    p1p2p3p4p5
    113.6014.6215.6416.1617.18
    214.6015.6216.6417.6618.68
    314.6016.6218.6420.6621.68
    415.6018.6220.6422.6624.68
    515.6018.6220.6424.1627.18
    DownLoad: CSV

    表 3  YCe-143

    Table 3.  Values of YCe-143.

    Model No.p1/%p2/%p3/%p4/%p5/%
    14.294.324.334.344.34
    24.334.354.374.384.37
    34.364.414.454.454.46
    44.404.474.494.504.49
    54.414.484.514.554.55
    DownLoad: CSV

    表 4  裂变反应率总不确定度

    Table 4.  Synthesize uncertainty of fission reaction rate.

    PositionModel 1Model 2Model 3Model 4Model 5
    p1/%6.56.56.57.46.1
    p2/%6.26.35.77.27.0
    p3/%6.55.86.78.610.0
    p4/%6.56.36.59.59.5
    p5/%6.56.17.010.910.9
    DownLoad: CSV
  • [1]

    Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949

    [2]

    Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar

    [3]

    张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar

    Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar

    [4]

    刘国明, 程和平, 邵增 2012 原子能科学技术 46 272

    Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272

    [5]

    马纪敏, 刘永康 2012 原子能科学技术 46 437

    Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437

    [6]

    徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97

    Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97

    [7]

    Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar

    [8]

    马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar

    Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar

    [9]

    伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125

    Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125

    [10]

    Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91

    [11]

    Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar

    [12]

    Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar

    [13]

    Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar

    [14]

    Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar

    [15]

    Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar

    [16]

    Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar

    [17]

    Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar

    [18]

    Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar

    [19]

    Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar

    [20]

    冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar

    Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar

    [21]

    鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645

    Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645

    [22]

    Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar

    [23]

    Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar

    [24]

    刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar

    Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar

    [25]

    Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar

    [26]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar

  • [1] Liu Dong-Kun, Wang Qing-Yu, Zhang Tian, Zhou Yu, Wang Xiang. Phase-field simulation on fission gas release behavior of large grain UO2 fuel. Acta Physica Sinica, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao. K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission. Acta Physica Sinica, 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [3] Monte-Carlo study of the pre-neutron emission mass and energy for neutron-induced 232Th fission. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211333
    [4] He Tie1\2\3, Xiao Jun2\3, An Li2\3, Yang Jian2\3, Zheng Pu2\3A novel method to measure prompt fission neutron spectrum based on fission γ tagging technique. Acta Physica Sinica, 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [5] Feng Song, Liu Rong, Lu Xin-Xin, Yang Yi-Wei, Wang Mei, Jiang Li, Qin Jian-Guo. Determination of thorium fission rate by off-line method. Acta Physica Sinica, 2014, 63(16): 162501. doi: 10.7498/aps.63.162501
    [6] Gao Hui, Xie Qi-Lin, Liu Xiao-Bo, Huang Po, Song Ling-Li, Liang Wen-Feng, Fan Xiao-Qiang. Establishment of persistent fission chains in a super prompt critical system. Acta Physica Sinica, 2013, 62(22): 222801. doi: 10.7498/aps.62.222801
    [7] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [8] Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurement and analysis of neutron capture rate of U-238 in an alternate depleted uranium/polyethylene system. Acta Physica Sinica, 2012, 61(10): 102801. doi: 10.7498/aps.61.102801
    [9] Jia Fei, Xu Hu-Shan, Huang Tian-Heng, Yuan Xiao-Hua, Zhang Hong-Bin, Li Jun-Qing, W.Scheid. Study of mass distributions of quasifission products based on dinuclear system. Acta Physica Sinica, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [10] Ouyang Xiao-Ping, Li Zhen-Fu, Wang Qun-Shu, Huo Yu-Kun, Ma Yian-Liang, Zhang Qian-Mei, Zhang Guo-Guang, Jin Yu-Ren. A high sensitive fission neutron detector system with a lead slot collimator. Acta Physica Sinica, 2005, 54(10): 4643-4647. doi: 10.7498/aps.54.4643
    [11] WANG YU-SHENG, XU JING-CHENG. PROBABILITY OF PROMPT NEUTRON EMISSION FROM SPONTANEOUS FISSION OF Pu240. Acta Physica Sinica, 1974, 23(1): 38-45. doi: 10.7498/aps.23.38
    [12] HUANG SHENG-NIAN, CHEN JIN-GUI, HAN HONG-YIN. MULTIPLICITY OF PROMPT NEUTRONS FROM SPONTANEOUS FISSION OF URANIUM-238. Acta Physica Sinica, 1974, 23(1): 46-51. doi: 10.7498/aps.23.46
    [13] ZHUO YI-ZHONG, LI ZE-QING, LI MING-SHOU. THE PAIRING EFFECTS OF NUCLEI ON THE ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS. Acta Physica Sinica, 1966, 22(2): 136-145. doi: 10.7498/aps.22.136
    [14] . Acta Physica Sinica, 1966, 22(2): 245-249. doi: 10.7498/aps.22.245
    [15] . Acta Physica Sinica, 1966, 22(1): 111-114. doi: 10.7498/aps.22.111
    [16] О ДАЛЬНЕЙШЕМ ИССЛЕДОВАНИИ СПЕКТРОВ НЕЙТРОНОВ ДЕЛЕНИЯ. Acta Physica Sinica, 1965, 21(3): 546-559. doi: 10.7498/aps.21.546
    [17] . Acta Physica Sinica, 1964, 20(9): 938-939. doi: 10.7498/aps.20.938
    [18] ZHU YEI-ZHUNG, LEE TSE-CHING. ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS AND THE STRUCTURE AT THE SADDLE POINT. Acta Physica Sinica, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
    [19] ИЗМЕРЕНИЕ СПЕКТРОВ НЕЙТРОНОВ ДЕЛЕНИЯ U235 И Pu239. Acta Physica Sinica, 1962, 18(9): 467-470. doi: 10.7498/aps.18.467
    [20] WANG TE-YUOH, YIH SHUAN-HUA. SOME THEORETICAL INVESTIGATION FOR THE STRUCTURE PHENOMENON OF FISSION NEUTRON SPECTRA. Acta Physica Sinica, 1962, 18(9): 471-482. doi: 10.7498/aps.18.471
Metrics
  • Abstract views:  8458
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2018
  • Accepted Date:  07 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回