Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectrum and dissociation properties of fluoro trichloro methane molecule in radiational field

Wu Yong-Gang Liu Jia-Xing Liu Hong-Ling Xu Mei Linghu Rong-Feng

Citation:

Spectrum and dissociation properties of fluoro trichloro methane molecule in radiational field

Wu Yong-Gang, Liu Jia-Xing, Liu Hong-Ling, Xu Mei, Linghu Rong-Feng
PDF
HTML
Get Citation
  • The ozone layer in the stratosphere of the earth’s atmosphere, which can be destroyed by CFC-11 molecule, plays a crucial role in human survival because it can absorb most of the harmful radiation from the sun and effectively protect the earth’s biology. Therefore, it is of evident significance to investigate the properties of CFC-11 molecule. By Motivated by this and the adoption of B3LYP complex function at a level of 6-311++g(3df, 3pd) basis set, we carry out a series of theoretical studies of the Freon material CFC-11 (CFCl3) molecules, including the studies of the equilibrium structure, electric dipole moment, total energy, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) level, energy gap, infrared and Raman spectrum, C—F dissociation characteristics of CFC-11 molecule, and the effect of the applied electric field on CFC-11 molecule as well. The results show that the maximum error between the theoretical calculation value and the experimental value is less than 2% for an optimized ground state structure; the C—F bond length and C—Cl bond length extend with the increase of electric field intensity, but the degree of change of C—F bond length is much stronger than that of C—Cl; the HOMO energy level and total energy go up and then come down as the external field rises, while the LUMO energy level goes up as the field increases. The energy gap Eg first increases and then decreases with the variation of EH and EL. The dipole moment without electric field is a minimum value, and the external electric field leads the molecular polarity to increase and the molecular activity to strengthen. The electric field influences the absorption intensity of infrared and Raman spectrum. The infrared and Raman spectrum move toward the long wave under the action of positive electric field, while they move toward the short wave under the action of negative electric field. The red- or blue-shift of infrared and Raman spectrum occur with the change of electric field. The electric field can be adopted as an auxiliary means to separate the overlapping or quasi-overlapping spectral lines. The potential well depth decreases with the increase of the reverse electric field until it vanishes, which causes the bound state ability of C—F bond of CFC-11 molecule to gradually degrade. This paper is expected to provide a feasible and effective tunable means for the final dissociation and degradation of CFC-11 molecules.
      Corresponding author: Wu Yong-Gang, ygwu0946@163.com
    • Funds: Project supported by the Growth Foundation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJHKY[2016]214), the Awards of the Ministry of Science and Technology and the Natural Science Foundation of Guizhou Education University, China (Grant No. QKHPTRC[2017]5790-03), and the Guizhou Science and Technology Foundation of China (Grant No. QKHJ[2013]2219).
    [1]

    Stratford J 2002 Estimating CFC Releases from Cutting of Fridges (Scottish: Scottish Environment Protection Agency) p1

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [4]

    Vollmer M K, Young D, Trudinger C M, Mühle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth C M, Miller B R, Reimann S, Yao B, Steele L P, Wyss S A, Lunder C R, Arduini J, McCulloch A, Wu S H, Rhee T S, Wang R H J, Salameh P K, Hermansen O, Hill M, Langenfelds R L, Ivy D, O’Doherty S, Krummel P B , Maione M, Etheridge D M, Zhou L X, Fraser P J, Prinn R G, Weiss R F, Simmonds P G 2018 Atmos. Chem. Phys. 18 979Google Scholar

    [5]

    Schuck T J, Lefrancois F, Gallmann F, Wang D, Jesswein M, Hoker J, Bönisch H, Engel A 2018 Atmos. Chem. Phys. 18 16553Google Scholar

    [6]

    LeedhamElvidge E, Bönisch H, Brenninkmeijer C A, Engel A, Fraser P J, Gallacher E, Langenfelds R, Mühle J, Oram D E, Ray E A, Ridley A R, Röckmann T, Sturges W T, Weiss R F, Laube J C 2018 Atmos. Chem. Phys. 18 3369Google Scholar

    [7]

    Warner M J, Bullister J L, Wisegarver D P, Gammon R H, Weiss R F 1996 J. Geophys. Res. Oceans 101 20525Google Scholar

    [8]

    Willey D A, Fine R A, Sonnerup R E, Bullister J L, Smethie Jr W M, Warner M J 2004 Geophys. Res. Lett. 31 L01303Google Scholar

    [9]

    Font R, Fullana A, Caballero J A, Candela J, Garcıa A 2001 J. Anal. Appl. 58−59 63Google Scholar

    [10]

    Cullis C F, Hirschler M M 1981 The Combustion of Organic Polymers (London: Clarendon Press Oxford) p120

    [11]

    Lattimer R P, Williams R C 2002 J. Anal. Appl. Pyroly. 63 85Google Scholar

    [12]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R Wang J F, He Z F, Qiu X J, Gregor K 2016 Acta Phys. Sin. 65 113301Google Scholar

    [13]

    侯健, 韩功元, 张振满, 潘循皙, 侯惠奇 1999 复旦学报 (自然科学版) 38 627

    Hou J, Han G Y, Zhang Z M, Pan X X, Hou H Q 1999 J. Fudan Univ. (Natural Science) 38 627

    [14]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [15]

    尹文怡, 刘玉柱, 林华, 李炳生, 秦朝朝 2018 光谱学与光谱分析 38 21

    Yin W Y, Liu Y Z, Lin H, Li B S, Qin C C 2018 Spectrosc. Spect. Anal. 38 21

    [16]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [17]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin. 64 153102Google Scholar

    [18]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [19]

    Wu D L, Tan B, Wan H J, Xie A D, Ding D J 2015 Chin. Phys. Lett. 32 073101Google Scholar

    [20]

    Haynes W M 2014 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press) p9

    [21]

    Shimanouchi T 1977 J. Phys. Chem. Ref. Data 6 993Google Scholar

    [22]

    McDaniel A H, Cantrell C A, Davidson J A, Shetter R E, Calvert J G 1991 J. Atmos. Chem. 12 211Google Scholar

    [23]

    Nanes R, Silvaggio P M, Boese R W 1980 J. Quant. Spectrosc. Radiat. Transfer 23 211Google Scholar

  • 图 1  CFC-11分子的几何结构

    Figure 1.  Equilibrium structure of CFC-11 molecule.

    图 2  键长随电场的变化

    Figure 2.  Bond length variation with external electric field.

    图 3  偶极矩随电场的变化

    Figure 3.  Dipole moment variation with external electric field.

    图 4  总能量随电场变化

    Figure 4.  Total energy variation with external electric field.

    图 5  HOMO和LUMO能级随电场变化

    Figure 5.  The HOMO and LUMO energy level variation with external electric field.

    图 6  能隙随电场变化

    Figure 6.  Energy gap variation with external electric field.

    图 7  红外光谱随电场强度的变化 (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) a.u.; (f) 0.01 a.u.; (g) 0.02 a.u.; (h) 0.03 a.u.; (i) 0.04 a.u.

    Figure 7.  Variation of the infrared intensities with external electric field: (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (h) 0.02 a.u.; (g) 0.03 a.u.; (i) 0.04 a.u..

    图 8  红外谱线242.99 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Figure 8.  Variation of infrared spectrum of 242.99 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 9  红外谱线802.40 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Figure 9.  Variation of infrared spectrum of 802.40 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 10  拉曼光谱随电场强度的变化 (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (g) 0.02 a.u.; (h) 0.03 a.u.; (i) 0.04 a.u.

    Figure 10.  Variation of Raman spectrum with external electric field: (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (h) 0.02 a.u.; (g) 0.03 a.u.; (i) 0.04 a.u..

    图 11  拉曼谱394.42 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Figure 11.  Variation of Raman spectrum of 394.42 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 12  拉曼谱802.40 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Figure 12.  Variation of Raman spectrum of 802.40 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 13  反向电场下C—F键势能曲线

    Figure 13.  Potential energy curve variation with negative electric field.

    图 14  正向电场下C—F键势能曲线

    Figure 14.  Potential energy curve variation with positive electric field.

    表 1  不同电场下计算得到的CFC-11分子参数(1 hartree = 110.5 × 10–21 J)

    Table 1.  Calculated parameters of CFC-11 molecule under different external electric field.

    F/a.u. Re(C—F)/Å Re(C—Cl)/nm E/hartree $\mu$/Debye
    –0.04 1.2764 1.8118 –1518.7025 5.0491
    –0.03 1.2898 1.8010 –1518.6855 3.6168
    –0.02 1.3043 1.7916 –1518.6740 2.2462
    –0.01 1.3199 1.7830 –1518.6678 0.9145
    0.00 1.3385 1.7757 –1518.6668 0.4044
    0.01 1.3582 1.7692 –1518.6710 1.7191
    0.02 1.3825 1.7628 –1518.6803 3.0657
    0.03 1.4135 1.7563 –1518.6952 4.4805
    0.04 1.4587 1.7486 –1518.7158 6.0486
    DownLoad: CSV

    表 2  无电场时CFC-11分子的红外谱实验值与计算值

    Table 2.  Experiment data and calculated data of infrared spectrum for CFC-11 molecule without external electric field.

    Frequency 本文 实验值[21] 实验值[22] 实验值[23]
    f1/cm–1 1071.2887 1085 1085 1085
    f2/cm–1 526.5703 535 535
    f3/cm–1 347.5578 350 351
    f4/cm–1 802.3721, 802.4017 847 846 847
    f5/cm–1 394.9112, 394.9163 394 395
    f6/cm–1 242.9898, 242.9928 241 243
    DownLoad: CSV
  • [1]

    Stratford J 2002 Estimating CFC Releases from Cutting of Fridges (Scottish: Scottish Environment Protection Agency) p1

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [4]

    Vollmer M K, Young D, Trudinger C M, Mühle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth C M, Miller B R, Reimann S, Yao B, Steele L P, Wyss S A, Lunder C R, Arduini J, McCulloch A, Wu S H, Rhee T S, Wang R H J, Salameh P K, Hermansen O, Hill M, Langenfelds R L, Ivy D, O’Doherty S, Krummel P B , Maione M, Etheridge D M, Zhou L X, Fraser P J, Prinn R G, Weiss R F, Simmonds P G 2018 Atmos. Chem. Phys. 18 979Google Scholar

    [5]

    Schuck T J, Lefrancois F, Gallmann F, Wang D, Jesswein M, Hoker J, Bönisch H, Engel A 2018 Atmos. Chem. Phys. 18 16553Google Scholar

    [6]

    LeedhamElvidge E, Bönisch H, Brenninkmeijer C A, Engel A, Fraser P J, Gallacher E, Langenfelds R, Mühle J, Oram D E, Ray E A, Ridley A R, Röckmann T, Sturges W T, Weiss R F, Laube J C 2018 Atmos. Chem. Phys. 18 3369Google Scholar

    [7]

    Warner M J, Bullister J L, Wisegarver D P, Gammon R H, Weiss R F 1996 J. Geophys. Res. Oceans 101 20525Google Scholar

    [8]

    Willey D A, Fine R A, Sonnerup R E, Bullister J L, Smethie Jr W M, Warner M J 2004 Geophys. Res. Lett. 31 L01303Google Scholar

    [9]

    Font R, Fullana A, Caballero J A, Candela J, Garcıa A 2001 J. Anal. Appl. 58−59 63Google Scholar

    [10]

    Cullis C F, Hirschler M M 1981 The Combustion of Organic Polymers (London: Clarendon Press Oxford) p120

    [11]

    Lattimer R P, Williams R C 2002 J. Anal. Appl. Pyroly. 63 85Google Scholar

    [12]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R Wang J F, He Z F, Qiu X J, Gregor K 2016 Acta Phys. Sin. 65 113301Google Scholar

    [13]

    侯健, 韩功元, 张振满, 潘循皙, 侯惠奇 1999 复旦学报 (自然科学版) 38 627

    Hou J, Han G Y, Zhang Z M, Pan X X, Hou H Q 1999 J. Fudan Univ. (Natural Science) 38 627

    [14]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [15]

    尹文怡, 刘玉柱, 林华, 李炳生, 秦朝朝 2018 光谱学与光谱分析 38 21

    Yin W Y, Liu Y Z, Lin H, Li B S, Qin C C 2018 Spectrosc. Spect. Anal. 38 21

    [16]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [17]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin. 64 153102Google Scholar

    [18]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [19]

    Wu D L, Tan B, Wan H J, Xie A D, Ding D J 2015 Chin. Phys. Lett. 32 073101Google Scholar

    [20]

    Haynes W M 2014 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press) p9

    [21]

    Shimanouchi T 1977 J. Phys. Chem. Ref. Data 6 993Google Scholar

    [22]

    McDaniel A H, Cantrell C A, Davidson J A, Shetter R E, Calvert J G 1991 J. Atmos. Chem. 12 211Google Scholar

    [23]

    Nanes R, Silvaggio P M, Boese R W 1980 J. Quant. Spectrosc. Radiat. Transfer 23 211Google Scholar

  • [1] Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal. Acta Physica Sinica, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [2] Zhang Xiu-Rong, Li Yang, Yin Lin, Wang Yang-Yang. Theoretical study on polarities and spectrum properties of WnNim (n+m=8) clusters. Acta Physica Sinica, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [3] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [4] Tang Hui-Shuai, Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing. The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [5] Jia Xiang-Hua, Lü Shu-Chen. Spectroscopic properties of Er3+and Er3+/Yb3+ co-doped bismuth glasses. Acta Physica Sinica, 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971
    [6] Spectroscopic properties of Nd-doped and Nd-Al-codoped high silica glasses. Acta Physica Sinica, 2007, 56(12): 7023-7028. doi: 10.7498/aps.56.7023
    [7] Qian Qi, Wang Yan, Zhang Qin-Yuan, Yang Zhong-Min, Yang Gang-Feng, Jiang Zhong-Hong. Optical characterization of ultraviolet laser photosensitive Er3+-doped bismuth-silicate glasses. Acta Physica Sinica, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [8] Yang Qiu-Hong, Zeng Zhi-Jiang, Xu Jun, Su Liang-Bi. Spectroscopic characteristics of transparent polycrystalline MgO and TiO2 codoped Al2O3 ceramics. Acta Physica Sinica, 2006, 55(6): 2726-2729. doi: 10.7498/aps.55.2726
    [9] Li Tao, Zhang Qin-Yuan, Jiang Zhong-Hong. Effects of Ce3+ ions on the spectroscopic properties of fluorophosphate glasses codoped with Er3+/Yb3+. Acta Physica Sinica, 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [10] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. Spontaneous emission from a Λ-type atom in anisotropic photonic crystal. Acta Physica Sinica, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [11] Lui Yue-Hui, Chen Dong-Dan, Hou Zhi-Yuan, Chen He, Zhang Qin-Yuan, Deng Zai-De, Jiang Zhong-Hong. Optical properties of Er3+ in TeO2-based oxyhalide glasses pumped by 977nm. Acta Physica Sinica, 2005, 54(1): 422-428. doi: 10.7498/aps.54.422
    [12] Zeng Zhi-Jiang, Yang Qiu-Hong, Xu Jun. Spectroscopic characteristics of Cr3+:Al2O3 polycrystalline transparent alumina ceramics. Acta Physica Sinica, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [13] Shen Xiang, Nie Qiu-Hua, Xu Tie-Feng, Gao Yuan. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [14] Chen Bing-Yan, Liu Yue-Hui, Chen Dong-Dan, Jiang Zhong-Hong. Spectroscopic properties of new erbium-doped tellurite glass. Acta Physica Sinica, 2005, 54(5): 2374-2378. doi: 10.7498/aps.54.2374
    [15] Li Tao, Zhang Qin-Yuan, Feng Zhou-Ming, Zhao Chun, Jiang Zhong-Hong. Spectroscopic properties of Er3+-doped alkaline/alkaline-earth metal modified fluorophosphate glasses. Acta Physica Sinica, 2005, 54(10): 4926-4932. doi: 10.7498/aps.54.4926
    [16] Ma Hong-Ping, Xu Shi-Qing, Jiang Zhong-Hong. Spectroscopic properties of Er3+-doped heavy metal oxyfluoride bismuth silicate glasses. Acta Physica Sinica, 2004, 53(5): 1378-1383. doi: 10.7498/aps.53.1378
    [17] Yang Jian-Hu, Dai Shi-Xun, Wen Lei, Liu Zhu-Ping, Hu Li-Li, Jiang Zhong-Hong. Spectroscopic properties and thermal stability of a new erbium-doped bismuth-based glass. Acta Physica Sinica, 2003, 52(2): 508-514. doi: 10.7498/aps.52.508
    [18] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
    [19] Liu Zhu-Ping, Hu Li-Li, Zhang De-Biao, Dai Shi-Yun, Qi Chang-Hong, Jiang Zhong-Hong. . Acta Physica Sinica, 2002, 51(11): 2629-2634. doi: 10.7498/aps.51.2629
    [20] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
Metrics
  • Abstract views:  8696
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2018
  • Accepted Date:  07 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回