Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method

Jiang Tao Huang Jin-Jing Lu Lin-Guang Ren Jin-Lian

Citation:

Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method

Jiang Tao, Huang Jin-Jing, Lu Lin-Guang, Ren Jin-Lian
PDF
HTML
Get Citation
  • To improve the numerical accuracy and computational efficiency of solving high-dimensional nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP) equation by using traditional SPH method, a high-order split-step coupled with a corrected parallel SPH (HSS-CPSPH) method is developed by applying virtual particles to the boundary. The improvements are described as follows. Firstly, the nonlinear Schrödinger equation is divided into linear derivative term and nonlinear term based on the high-order split-step method. Then, the linear derivative term is solved by extending the first-order symmetric SPH method in explicit time integration. Meanwhile, the MPI parallel technique is introduced to enhance the computational efficiency. In this work, the accuracy, convergence and the computational efficiency of the proposed method are tested by solving the NLS equations with the periodic and Dirichlet boundary conditions, and compared with the analytical solutions. Also, the singularity of solitary waves under the periodic boundary condition is accurately obtained using the proposed particle method. Subsequently, the proposed HSS-CPSPH method is used to predict the results of complex two-dimensional and three-dimensioanl GP problems which are compared with other numerical results. The phenomenon of singular sharp angle in the propagation of nonlinear solitary wave and the process of quantum vortex under Bose-Einstein condensates with external rotation are presented accurately.
      Corresponding author: Ren Jin-Lian, rjl20081223@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51779215), the China Postdoctoral Science Foundation of China (Grant Nos. 2015M581869, 2015T80589), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150436), the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAD24B02-02), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (Grant No. PPZY2015B109), and the Undergraduate Research and Innovation Project of Jiangsu Province, China (Grant No. 201611117016Z).
    [1]

    Bandrauk A D, Shen H 1994 J. Phys. A: Gen. Phys. 27 7147Google Scholar

    [2]

    Yoshida H 1990 Phys. Lett. A 150 262Google Scholar

    [3]

    Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar

    [4]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [5]

    Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827

    [6]

    Bao W Z, Wang H Q 2006 J. Comput. Phys. 217 612Google Scholar

    [7]

    Bao W Z, Shen J 2005 SIAM J. Sci. Comput. 26 2010Google Scholar

    [8]

    Wang H Q 2005 Appl. Math. Comput. 170 17Google Scholar

    [9]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [10]

    Chen RY, Nie L R, Chen C Y, Wang C J 2017 J. Stat. Mech. 2017 013201Google Scholar

    [11]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [12]

    Chen R Y, Tong L M, Nie L R , Wang C I, Pan W 2017 Physica A 468 532Google Scholar

    [13]

    Gao Y L, Mei L Q 2016 Appl. Numer. Math. 109 41Google Scholar

    [14]

    Xu Y, Shu C W 2005 J. Comput. Phys. 205 72−97Google Scholar

    [15]

    Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar

    [16]

    Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar

    [17]

    蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar

    Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar

    [18]

    Chen J K, Beraun J E 2000 Comput. Meth. Appl. Mech. Eng. 190 225Google Scholar

    [19]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific)

    [20]

    Crespo A J C, Domínguez J M, Rogers B D, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O 2015 Comput. Phys. Commun. 187 204Google Scholar

    [21]

    Ren J L, Jiang T, Lu W G, Li G 2016 Comput. Phys. Commun. 205 87Google Scholar

    [22]

    刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar

    [23]

    Sun P N, Colagrosso A, Marrone S, Zhang A M 2016 Comput. Meth. Appl. Mech. Eng. 305 849Google Scholar

    [24]

    Huang C, Lei J M, Liu M B, Peng X Y 2015 Int. J. Numer. Methods Fluids 78 691Google Scholar

    [25]

    Huang C, Zhang D H, Shi Y X, Si Y L, Huang B 2018 Int. J. Numer. Meth. Eng. 113 179Google Scholar

    [26]

    Weideman J A C, Herbst B M 1986 SIAM J. Numer. Anal. 23 485Google Scholar

  • 图 1  ${k_{\rm{1}}} = {k_{\rm{2}}} = 1,\;h = {\text{π}}/64$时不同时刻$u\left( {x,{\text{π}}} \right)$的实部沿x轴的变化 (a) $t=1$; (b) $t = 3$

    Figure 1.  Curve of the $\operatorname{Re} \left( {u\left( {x,{\text{π}}} \right)} \right)$ along x-axis at different time with ${k_{\rm{1}}} = {k_{\rm{2}}} = 1,\;h = {\text{π}}/64$: (a) $t=1$; (b) $t = 3$.

    图 2  ${k_{\rm{1}}} = {k_{\rm{2}}} = 4,\;h = {\text{π}}/128$时不同时刻$u\left( {x,{\text{π}}} \right)$的实部沿x轴的变化 (a) t = 0.1; (b) t = 1

    Figure 2.  Curve of the $\operatorname{Re} \left( {u\left( {x,{\text{π}}} \right)} \right)$ along x-axis at different time with ${k_{\rm{1}}} = {k_{\rm{2}}} = 4,\;h = {\text{π}}/128$: (a) t = 0.1; (b) t = 1.

    图 4  初始条件2下, 在4个不同时刻三孤立子波函数$\left| u \right|$的传播过程 (a) $t=0$; (b) $t = 20$; (c) $t = 30$; (d) $t = 50$

    Figure 4.  Solitary wave propagation process of $\left| u \right|$ at different time with initial condition 2: (a) $t=0$; (b) $t = 20$; (c) $t = 30$; (d) $t = 50$.

    图 3  初始条件1下, 在4个不同时刻孤立波函数$\left| u \right|$的传播过程 (a) $t = 0$; (b) $t = 20$; (c) $t = 30$; (d) $t = 50$

    Figure 3.  Solitary wave propagation process of $\left| u \right|$ at different time with the initial condition 1: (a) $t = 0$; (b) $t = 20$; (c) $t = 30$; (d) $t = 50$.

    图 5  在两个不同时刻不同数值方法得到的$\left| u \right|$等值线图 (a) $t = 0$; (b) $t = 0.108$

    Figure 5.  Contours of $\left| u \right|$ obtained using different methods at two different times: (a) $t = 0$; (b) $t = 0.108$.

    图 6  不同时刻${\left| u \right|^2}$沿y$\left( {x = 0,z = 0} \right)$变化曲线

    Figure 6.  Curve of ${\left| u \right|^2}$ along y-axis $\left( {x = 0,z = 0} \right)$ at different time.

    图 7  在3个不同时刻${\left| u \right|^2}$在不同截面上的等值线 (a) $\left( {0,y,z} \right)$截面; (b)$\left( {x,y,0} \right)$截面

    Figure 7.  Contour of ${\left| u \right|^2}$ along different profile at different time: (a) $\left( {0,y,z} \right)$; (b) $\left( {x,y,0} \right)$.

    图 8  两个不同时刻下$\left| {{u_1}} \right|$沿$x$轴($y$ = 0.5)的变化 (a) $t$ = 0.05; (b) $t$ = 0.25

    Figure 8.  Curve of $\left| {{u_1}} \right|$ along x-axis ($y$ = 0.5) at two different time: (a) $t$ = 0.05; (b) $t$ = 0.25.

    图 9  两个不同时刻下t = 0 (第一列)和t = 0.25 (第二列)三个物理量等值线变化 (a1), (a2) $ {\rm Re} ({u_1}) $; (b1), (b2) ${\rm Im} ({u_1})$; (c1), (c2) $\left| {{u_1}} \right|$

    Figure 9.  Contours of three physical quantities at two different times t = 0 (the first row) and t = 0.25 (the second row): (a1), (a2) $\operatorname{Re} ({u_1})$; (b1), (b2) $\operatorname{Im} ({u_1})$; (c1), (c2) $\left| {{u_1}} \right|$.

    表 1  ${k_{\rm{1}}} = {k_{\rm{2}}} = 1,h = {\text{π}}/64$时几个不同时刻里两种方法的误差${e_{\rm{m}}}$

    Table 1.  Error ${e_{\rm{m}}}$ obtained using two different methods at different time (${k_{\rm{1}}} = {k_{\rm{2}}} = 1,h = {\text{π}}/64$).

    时间tSS-ICPSPHHSS-CPSPH
    0.51.697 × 10–31.696 × 10–3
    13.616 × 10–32.494 × 10–3
    27.347 × 10–34.857 × 10–3
    DownLoad: CSV

    表 2  ${k_{\rm{1}}} = {k_{\rm{2}}} = 1$, 时间t = 1时, 两种方法在不同粒子间距下的误差和收敛阶

    Table 2.  Error ${e_{\rm{m}}}$ and convergent order $o{r_{\rm{\alpha }}}$ obtained using two different methods at $t=1$ and different particle distance (${k_1} = {k_2} = 1$).

    $h = {\text{π}}/32$$h = {\text{π}}/64$$h = {\text{π}}/128$
    ${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$
    SS-ICPSPH1.381 × 10–23.616 × 10–31.9339.0412 × 10–42.00
    HSS-CPSPH1.381 × 10–22.494 × 10–32.474.498 × 10–42.47
    DownLoad: CSV

    表 3  ${k_{\rm{1}}} = {k_{\rm{2}}} = 1,h = {\text{π}}/64$时, 粒子分布均匀或不均匀方式下, 两种方法的误差${e_{\rm{m}}}$

    Table 3.  Error ${e_{\rm{m}}}$ obtained using different methods at different distribution (${k_1} = {k_2} = 1$,$h = {\text{π}}/64$).

    均匀分布粒子非均匀分布情形1非均匀分布情形2
    $t = 0.1$$t = 1$$t = 0.1$$t = 1$$t = 0.1$$t = 1$
    SS-ICPSPH2.776 × 10–43.616 × 10–32.944 × 10–43.818 × 10–33.116 × 10–44.082 × 10–3
    HSS-CPSPH2.774 × 10–42.494 × 10–32.886 × 10–42.527 × 10–32.967 × 10–42.578 × 10–3
    DownLoad: CSV

    表 4  $h = {\text{π}}/64$时, 三个不同时刻两种方法的最大误差${e_{\rm{m}}}$

    Table 4.  Error ${e_{\rm{m}}}$ obtained using two different methods at three times ($h = {\text{π}}/64$).

    时间tSS-ICPSPHHSS-CPSPH
    0.59.131 × 10–44.512 × 10–4
    11.828 × 10–38.135 × 10–4
    23.658 × 10–31.623 × 10–3
    DownLoad: CSV

    表 5  t = 1时不同空间步长情况下两种粒子方法的误差和收敛阶

    Table 5.  Error and order of convergence by different methods at t = 1 and different h.

    $h = {\text{π}}/32$$h = {\text{π}}/64$$h = {\text{π}}/128$
    ${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$
    SS-ICPSPH7.553 × 10–31.828 × 10–32.0464.316 × 10–42.082
    HSS-CPSPH4.534 × 10–38.135 × 10–42.4761.379 × 10–42.560
    DownLoad: CSV

    表 6  粒子数为${161^3}$时, 不同CPU个数下运行到不同步数所需时间(单位: s)

    Table 6.  Consumed CPU time (unit: s) of different calculated time step with particle number ${161^3}$ at different CPUs.

    CPU数量步数相对加速比S
    num = 1num = 10num = 1000
    297805.91075081174728
    1216716.918516.7215526.7
    248388.879404.37120284.371.792
    365603.296344.9887524.982.462
    722948.833189.2448564.284.438
    DownLoad: CSV

    表 7  在不同粒子数下不同CPU个数下, 运行到1000步时平均每步所消耗时间(单位: s)

    Table 7.  The average consumed CPU time (unit: s) of calculated time step 1000 with different particle number and different CPUs.

    粒子数CPU数量
    212243672
    ${121^3}$449.5582.92645.96235.00019.585
    ${161^3}$1076.922198.810111.9081.92247.363
    ${181^3}$1558.445292.711164.838120.88665.437
    ${201^3}$2190.921425.688235.775179.85696.836
    DownLoad: CSV
  • [1]

    Bandrauk A D, Shen H 1994 J. Phys. A: Gen. Phys. 27 7147Google Scholar

    [2]

    Yoshida H 1990 Phys. Lett. A 150 262Google Scholar

    [3]

    Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar

    [4]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [5]

    Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827

    [6]

    Bao W Z, Wang H Q 2006 J. Comput. Phys. 217 612Google Scholar

    [7]

    Bao W Z, Shen J 2005 SIAM J. Sci. Comput. 26 2010Google Scholar

    [8]

    Wang H Q 2005 Appl. Math. Comput. 170 17Google Scholar

    [9]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [10]

    Chen RY, Nie L R, Chen C Y, Wang C J 2017 J. Stat. Mech. 2017 013201Google Scholar

    [11]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [12]

    Chen R Y, Tong L M, Nie L R , Wang C I, Pan W 2017 Physica A 468 532Google Scholar

    [13]

    Gao Y L, Mei L Q 2016 Appl. Numer. Math. 109 41Google Scholar

    [14]

    Xu Y, Shu C W 2005 J. Comput. Phys. 205 72−97Google Scholar

    [15]

    Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar

    [16]

    Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar

    [17]

    蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar

    Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar

    [18]

    Chen J K, Beraun J E 2000 Comput. Meth. Appl. Mech. Eng. 190 225Google Scholar

    [19]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific)

    [20]

    Crespo A J C, Domínguez J M, Rogers B D, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O 2015 Comput. Phys. Commun. 187 204Google Scholar

    [21]

    Ren J L, Jiang T, Lu W G, Li G 2016 Comput. Phys. Commun. 205 87Google Scholar

    [22]

    刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar

    [23]

    Sun P N, Colagrosso A, Marrone S, Zhang A M 2016 Comput. Meth. Appl. Mech. Eng. 305 849Google Scholar

    [24]

    Huang C, Lei J M, Liu M B, Peng X Y 2015 Int. J. Numer. Methods Fluids 78 691Google Scholar

    [25]

    Huang C, Zhang D H, Shi Y X, Si Y L, Huang B 2018 Int. J. Numer. Meth. Eng. 113 179Google Scholar

    [26]

    Weideman J A C, Herbst B M 1986 SIAM J. Numer. Anal. 23 485Google Scholar

  • [1] Xu Xiao-Yang, Zhou Ya-Li, Yu Peng. Improved smoothed particle dynamics simulation of eXtended Pom-Pom viscoelastic fluid. Acta Physica Sinica, 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] Jiang Tao, Chen Zhen-Chao, Ren Jin-Lian, Li Gang. Simulation of three-dimensional transient heat conduction problem with variable coefficients based on the improved parallel smoothed particle hydrodynamics method. Acta Physica Sinica, 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [3] Cui Shao-Yan, Lü Xin-Xin, Xin Jie. Collapse and evolution of wave field based on a generalized nonlinear Schrdinger equation. Acta Physica Sinica, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [4] Liu Hu, Qiang Hong-Fu, Chen Fu-Zhen, Han Ya-Wei, Fan Shu-Jia. A new boundary treatment method in smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [5] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [6] Lei Juan-Mian, Yang Hao, Huang Can. Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection. Acta Physica Sinica, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [7] Jiang Tao, Ren Jin-Lian, Xu Lei, Lu Lin-Guang. A corrected smoothed particle hydrodynamics approach to solve the non-isothermal non-Newtonian viscous fluid flow problems. Acta Physica Sinica, 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [8] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [9] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [10] Yang Xiu-Feng, Liu Mou-Bin. Improvement on stress instability in smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [11] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [12] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [13] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [14] Liu Mou-Bin, Chang Jian-Zhong. Particle distribution and numerical stability in smoothed particle hydrodynamics method. Acta Physica Sinica, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [15] Song Sha-Sha, Meng Jun-Min, Song Shi-Yan, Wang Jing, Wang Jian-Bu. Numerical simulation of internal waves propagation in deep sea by nonlinear Schr?dinger equation. Acta Physica Sinica, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [16] Luan Shi-Xia, Zhang Qiu-Ju, Wu Hui-Chun, Sheng Zheng-Ming. Self-compression and splitting of laser pulse in plasmas. Acta Physica Sinica, 2008, 57(6): 3646-3652. doi: 10.7498/aps.57.3646
    [17] Lei Ting, Tu Cheng-Hou, Li En-Bang, Li Yong-Nan, Guo Wen-Gang, Wei Dai, Zhu Hui, Lü Fu-Yun. The theoretical study and numerical simulation of self-similar transmission of high energy wave-breaking free ultra-short pulse. Acta Physica Sinica, 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [18] Gong Lun-Xun. Some new exact solutions of the Jacobi elliptic functions of NLS equation. Acta Physica Sinica, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [19] Ruan Hang-Yu, Li Hui-Jun. Solution of the nonlinear Schr?dinger equation using the generalized Lie group reduction method. Acta Physica Sinica, 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [20] RUAN HANG-YU, CHEN YI-XIN. RING SOLITONS, DROMIONS, BREATHERS AND INSTANTONS OF THE NLS EQUATION. Acta Physica Sinica, 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
Metrics
  • Abstract views:  7966
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2019
  • Accepted Date:  24 February 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回