Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure of active system under the electric double layer interaction

Jin Kang Jing Guang-Yin

Citation:

Pressure of active system under the electric double layer interaction

Jin Kang, Jing Guang-Yin
PDF
HTML
Get Citation
  • Self-driven particle systems consist of particles that can extract energy from the environment and transform into active motion, and thus are significantly different from the classical passive particle systems. For such an active system, the question of whether there is a classical equation of state (EOS) has caused spreading concern. Recent studies analyzed the validity of the EOS of an active system under the harmonic potential (Solon et. al, 2015 Nature Physics, 11 673). In contrast, this paper explores the conditions for and the specific forms of the EOS of an active system under electric double-layer interaction between the wall and the particles. The results show that the wall pressure is related to the shape of the active particles. When a wall exerts a moment on the active particles, the particles orientation turns to the equilibrium state parallel to the wall surface under the action of the moment, and the increase of the wall-particle interaction strength enhances the parallel-orientation trend, which reduces the system pressure. The association of pressure and wall means that the active system does not have a general equation of state. In the case where the wall-particle interaction intensity is extremely small or extremely large, by defining the effective temperature, the active system has an equation of state similar to that of the ideal gas. In addition, it is found that the extent of the shape of particles deviating from the rotational symmetry is a key factor affecting the pressure of active particles. The research results provide a reference for the study of the current active system equilibrium properties, and provide a basis for studying the thermodynamic properties of active systems under more complex interaction potentials.
      Corresponding author: Jin Kang, jinkang@nwu.edu.cn ; Jing Guang-Yin, jing@nwu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774287) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM1017).
    [1]

    Paxton W F, Kistler K C, Olmeda C C, Ayusman, Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H 2004 J. Am. Chem. Soc. 126 3424Google Scholar

    [2]

    Deseigne J, Leonard S, Dauchot O, Chate H 2012 Soft Matter 8 5629Google Scholar

    [3]

    Martin A 2008 Biotechniques 44 564Google Scholar

    [4]

    Tim S, Chen D T N, Stephen J D, Michael H, Zvonimir D 2012 Nature 491 431Google Scholar

    [5]

    Scot K C, James L M 2000 Nature 407 1026Google Scholar

    [6]

    Karsten K, Jülicher F 2000 Phys. Rev. Lett. 85 1778Google Scholar

    [7]

    Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W, Steven F, Hans-Hermann T, Jacob W, Thorsten W, Donald L D 2005 Science 310 987Google Scholar

    [8]

    Gregoire G, Chate H 2004 Phys. Rev. Lett. 92 025702Google Scholar

    [9]

    Lifshitz E M, Pitaevskii L P 1999 Physical Kinetics (Beijing: Beijing World Publishing Corporation) pp89− 92

    [10]

    Loi D, Mossa S, Cugliandolo L F 2008 Phys. Rev. E 77 051111Google Scholar

    [11]

    Shen T, Wolynes P G 2005 Phys. Rev. E 72 041927Google Scholar

    [12]

    Wang S, Wolynes P G 2011 Proc. Natl. Acad. Sci. USA 108 15184Google Scholar

    [13]

    Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E, Tailleur J 2015 Phys. Rev. Lett. 114 198301Google Scholar

    [14]

    Takatori S C, Yan W, Brandy J F 2014 Phys. Rev. Lett. 113 028103Google Scholar

    [15]

    Yang X B, Manning L M, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [16]

    Takatori S C, Dier R D, Vermant J, Brady J F 2016 Nat. Commun. 7 10694Google Scholar

    [17]

    Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L, Berthier L, Cottin-Bizonne C 2015 Phys. Rev. X 5 011004

    [18]

    Foss D R, Brandy J F 2000 J. Rheol. 44 629Google Scholar

    [19]

    Liu C L, Fu X F, Liu L Z, Ren X J, Chau Carlos K L, Li S H, Xiang L, Zeng H L, Chen G H, Tang L H, Lenz P, Cui X D, Huang W, Hwa T, Huang J D 2011 Science 334 238Google Scholar

    [20]

    Baskaran A, Marchetti M C 2008 Phys. Rev. Lett. 101 268101Google Scholar

    [21]

    Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M, Tailleur J 2015 Nat. Phys. 11 673Google Scholar

    [22]

    Junot G, Briand G, Ledesma-Alonso R, Dauchot O 2017 Phys. Rev. Lett. 119 028002Google Scholar

    [23]

    伊斯雷尔奇维利 著 (王晓琳, 唐元晖, 卢滇南 译) 2011 分子间力和表面力 (北京: 科学出版社) 第280−286页

    Israelachvili (translated by Wang X L, Tang Y H, Lu D N) 2011 Intermolecular and Surface Forces (Beijing: Science Press) pp282−286 (in Chinese)

    [24]

    徐锡申, 张万箱等 1986 实用物态方程理论导引 (北京: 科学出版社) 第87−90页

    Xu X S, Zhang W X, et al 1986 Theorey of Practical Equation of State (Beijing: Science Press) pp87−90 (in Chineses)

    [25]

    Fily Y, Marchetti M 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [26]

    Tailleur J, Cates M 2008 Phys. Rev. Lett. 100 218103Google Scholar

    [27]

    Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L 2010 Phys. Rev. Lett. 105 088304Google Scholar

    [28]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T 2013 Phys. Rev. Lett. 110 238301Google Scholar

    [29]

    Marchetti M, Joanny J, Ramaswamy S, Liverpool T, Prost J, Rao M, Simha R 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [30]

    Bechinger C, Leonardo R D, Lowen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [31]

    Saragosti J, Silberzan P, Buguin A 2012 Plos One 7 35412Google Scholar

    [32]

    Alexandre S P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M, Tailleur J 2015 Nat. Phys. 11 673 (Supplementary information)

    [33]

    Ho C C, Keller A, Odell J A, Ottewill R H 1993 Colloid Polym. Sci. 271 469Google Scholar

    [34]

    Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C, Yodh A G 2006 Science 314 626Google Scholar

  • 图 1  主动系统粒子示意图, 粒子质心距离壁面水平距离为x, 粒子长度为2L, 取向角为θ

    Figure 1.  Schematic diagram of the active particle, the horizonal distance between the wall and the centroid of the particle is x, the length of the particle is 2L and the orienting angle is θ.

    图 2  等效压强随约化相互作用强度Zr的变化

    Figure 2.  Effective pressure as the function of reduced interaction intensity.

    图 3  等效压强随主动粒子约化长度Lr的变化

    Figure 3.  Effective pressure as the function of reduced length of active particle.

    图 4  力矩和压强随三种粒子结构常数的变化

    Figure 4.  The variations of the torques and the pressures as a function of structure constants of the three kinds of particle.

    图 5  对于不同的转动迁移率, 压强随粒子数密度的变化

    Figure 5.  The variations of pressures as a function of particle number density for different rotational mobilities.

    图 A1  对于不同的初始角坐标, 粒子取向角随时间的演化, 约化阻尼系数αr = 0.5

    Figure A1.  For different initial angular coordinates, the evolutions of orienting angles. Reduced damping coefficient αr = 0.5.

    表 1  不同类型主动系统粒子运动参数取值说明

    Table 1.  Description of particle motion parameters of different types of active systems.

    粒子类型尺寸/μm主动速度/μm·s–1平动扩散率Dt
    /μm2·s–1
    转动扩散率Dr/ rad2·s–1翻转率α/s–1
    被动布朗粒子[27]1.00 (直径)00.20.170
    主动布朗粒子[30]1.00 (直径)3.31.91.10 0
    运动-翻转粒子[31]2.00 (长), 0.25 (直径) 20.0100.0 3.3010
    DownLoad: CSV
  • [1]

    Paxton W F, Kistler K C, Olmeda C C, Ayusman, Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H 2004 J. Am. Chem. Soc. 126 3424Google Scholar

    [2]

    Deseigne J, Leonard S, Dauchot O, Chate H 2012 Soft Matter 8 5629Google Scholar

    [3]

    Martin A 2008 Biotechniques 44 564Google Scholar

    [4]

    Tim S, Chen D T N, Stephen J D, Michael H, Zvonimir D 2012 Nature 491 431Google Scholar

    [5]

    Scot K C, James L M 2000 Nature 407 1026Google Scholar

    [6]

    Karsten K, Jülicher F 2000 Phys. Rev. Lett. 85 1778Google Scholar

    [7]

    Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W, Steven F, Hans-Hermann T, Jacob W, Thorsten W, Donald L D 2005 Science 310 987Google Scholar

    [8]

    Gregoire G, Chate H 2004 Phys. Rev. Lett. 92 025702Google Scholar

    [9]

    Lifshitz E M, Pitaevskii L P 1999 Physical Kinetics (Beijing: Beijing World Publishing Corporation) pp89− 92

    [10]

    Loi D, Mossa S, Cugliandolo L F 2008 Phys. Rev. E 77 051111Google Scholar

    [11]

    Shen T, Wolynes P G 2005 Phys. Rev. E 72 041927Google Scholar

    [12]

    Wang S, Wolynes P G 2011 Proc. Natl. Acad. Sci. USA 108 15184Google Scholar

    [13]

    Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E, Tailleur J 2015 Phys. Rev. Lett. 114 198301Google Scholar

    [14]

    Takatori S C, Yan W, Brandy J F 2014 Phys. Rev. Lett. 113 028103Google Scholar

    [15]

    Yang X B, Manning L M, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [16]

    Takatori S C, Dier R D, Vermant J, Brady J F 2016 Nat. Commun. 7 10694Google Scholar

    [17]

    Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L, Berthier L, Cottin-Bizonne C 2015 Phys. Rev. X 5 011004

    [18]

    Foss D R, Brandy J F 2000 J. Rheol. 44 629Google Scholar

    [19]

    Liu C L, Fu X F, Liu L Z, Ren X J, Chau Carlos K L, Li S H, Xiang L, Zeng H L, Chen G H, Tang L H, Lenz P, Cui X D, Huang W, Hwa T, Huang J D 2011 Science 334 238Google Scholar

    [20]

    Baskaran A, Marchetti M C 2008 Phys. Rev. Lett. 101 268101Google Scholar

    [21]

    Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M, Tailleur J 2015 Nat. Phys. 11 673Google Scholar

    [22]

    Junot G, Briand G, Ledesma-Alonso R, Dauchot O 2017 Phys. Rev. Lett. 119 028002Google Scholar

    [23]

    伊斯雷尔奇维利 著 (王晓琳, 唐元晖, 卢滇南 译) 2011 分子间力和表面力 (北京: 科学出版社) 第280−286页

    Israelachvili (translated by Wang X L, Tang Y H, Lu D N) 2011 Intermolecular and Surface Forces (Beijing: Science Press) pp282−286 (in Chinese)

    [24]

    徐锡申, 张万箱等 1986 实用物态方程理论导引 (北京: 科学出版社) 第87−90页

    Xu X S, Zhang W X, et al 1986 Theorey of Practical Equation of State (Beijing: Science Press) pp87−90 (in Chineses)

    [25]

    Fily Y, Marchetti M 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [26]

    Tailleur J, Cates M 2008 Phys. Rev. Lett. 100 218103Google Scholar

    [27]

    Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L 2010 Phys. Rev. Lett. 105 088304Google Scholar

    [28]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T 2013 Phys. Rev. Lett. 110 238301Google Scholar

    [29]

    Marchetti M, Joanny J, Ramaswamy S, Liverpool T, Prost J, Rao M, Simha R 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [30]

    Bechinger C, Leonardo R D, Lowen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [31]

    Saragosti J, Silberzan P, Buguin A 2012 Plos One 7 35412Google Scholar

    [32]

    Alexandre S P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M, Tailleur J 2015 Nat. Phys. 11 673 (Supplementary information)

    [33]

    Ho C C, Keller A, Odell J A, Ottewill R H 1993 Colloid Polym. Sci. 271 469Google Scholar

    [34]

    Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C, Yodh A G 2006 Science 314 626Google Scholar

  • [1] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun. Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime. Acta Physica Sinica, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [3] Ma Gui-Cun, Zhang Qi-Li, Song Hong-Zhou, Li Qiong, Zhu Xi-Rui, Meng Xu-Jun. Theoretical study of the equation of state for warm dense matter. Acta Physica Sinica, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [4] Wu Na, Yang Jiao, Xiao Fen, Cai Ling-Cang, Tian Chun-Ling. Equation of state of solid krypton from correlated quantum chemistry calculations. Acta Physica Sinica, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [5] Peng Xiao-Juan, Liu Fu-Sheng. Problem and modification to the equation of state for liquid and solid-liquid mixed phase in Grover model. Acta Physica Sinica, 2012, 61(18): 186201. doi: 10.7498/aps.61.186201
    [6] Zhu Guo-Qiang, Jean-Pierre Boeuf, Li Jin-Xian. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air. Acta Physica Sinica, 2012, 61(23): 235202. doi: 10.7498/aps.61.235202
    [7] Zheng Jun, Gu Yun-Jun, Chen Qi-Feng, Chen Zhi-Yun. Compression properties of rare gases in region of ionization. Acta Physica Sinica, 2010, 59(10): 7472-7477. doi: 10.7498/aps.59.7472
    [8] Gu Yun-Jun, Zheng Jun, Chen Zhi-Yun, Chen Qi-Feng, Cai Ling-Cang. The equation of state of H2+He fluid mixture in the region of partial dissociation. Acta Physica Sinica, 2010, 59(7): 4508-4513. doi: 10.7498/aps.59.4508
    [9] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [10] Tian Chun-Ling, Cai Ling-Cang, Gu Yun-Jun, Jing Fu-Qian, Chen Zhi-Yun. Investigation of the pressure-volume-temperature equation of state for dense hydrogen-helium mixture using multi-shock compression method. Acta Physica Sinica, 2007, 56(7): 4180-4186. doi: 10.7498/aps.56.4180
    [11] Hou Yong, Yuan Jian-Min. First-principle calculations of phase transitions and equation of state at T=0K for gold. Acta Physica Sinica, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [12] Zhang Ying, Chen Qi-Feng, Gu Yun-Jun, Cai Ling-Cang, Lu Tie-Cheng. Self-consistent variational calculation of the dense fluid helium plasma in the region of partial ionization. Acta Physica Sinica, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [13] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu. Equation of state of detonation products based on statistical mechanical theory. Acta Physica Sinica, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [14] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [15] Liang Fang-Ying, Liu Hong, Li Ying-Jun. Study of high temperature superconduction under pressure. Acta Physica Sinica, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [16] Wang Cai-Xia, Tian Yang-Meng, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong, Meng Chuan-Min. A simplified model for computing state equation of argon plasma. Acta Physica Sinica, 2006, 55(11): 5784-5789. doi: 10.7498/aps.55.5784
    [17] Li Xiao-Jie. . Acta Physica Sinica, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
    [18] WANG FAN-HOU, CHEN JING-PING, MENG XU-JUN, ZHOU XIAN-MING, LI XI-JUN, SUN YONG-SHENG, JING FU-QIAN. STUDIES ON OPACITY OF SHOCK-GENERATED ARGON PLASMAS. Acta Physica Sinica, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
    [19] GENG HUA-YUN, WU QIANG, TAN HUA. STATISTICAL PARAMETER OF THERMODYNAMIC EQUATION OF STATE. Acta Physica Sinica, 2001, 50(7): 1334-1339. doi: 10.7498/aps.50.1334
    [20] HUA JING-SONG, JIN FU-QIAN, TAN HUA. A THEORETICAL METHOD TO OBTAIN THE SECOND ORDER PARTIAL DERIVATIVE OF SHEAR MODU LUS WITH RESPECT TO PRESSURE. Acta Physica Sinica, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
Metrics
  • Abstract views:  7119
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2019
  • Accepted Date:  21 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回