Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding

Wang Wei Deguchi Yoshihiro He Yong-Sen Zhang Jia-Zhong

Citation:

Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding

Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong
cstr: 32037.14.aps.68.20190663
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In engineering, the combustion chamber with a backward step is very popular, and it is a kind of flame stabilizer. In this type of combustion chamber, there will be shedding vortices at the step due to the instability of the flow field. The shedding vortices will carry reactants to move downstream and burn, resulting in unstable heat release and then pressure and velocity fluctuations of the sound field, thereby, finally, forming a combustion-vortex-acoustic interaction process. If a positive feedback loop is formed between the unstable heat release and the pressure fluctuation of sound field, combustion instability will occur, and it is also referred to as thermoacoustic oscillation due to vortex shedding. Combustion instability frequently occurs in many practical systems or equipment, and its induced significant pressure oscillations have a serious influence on the normal operation of the equipment. Recently, the combustion instability has been extensively studied experimentally, but the theoretical investigation on its nature is still rare. Since combustion instability is a complicated nonlinear phenomenon, it is necessary to study its nature from the viewpoint of nonlinear dynamics. Based on the one-dimensional simplified model of thermoacoustic instability involving vortex shedding proposed by Matveev and Culick, the typical nonlinear phenomenon in thermoacoustic oscillation induced by vortex shedding is studied. The study focuses on the initial value sensitivity of the system, the influence of key parameters on thermoacoustic oscillation, and the phenomenon of vortex-acoustic lock-on. Firstly, the Galerkin method is used to approximate the governing equation, and the partial differential equations are reduced to a set of ordinary differential equations. Then, the first ten modes are selected, and the pressure and velocity fluctuations of sound field under different system parameters are obtained by MATLAB program. Finally, the thermoacoustic instability of the system under different initial disturbances, the influences of different steady flow velocity on the thermoacoustic oscillation of the system, and the phenomenon of vortex-acoustic lock-on in thermoacoustic oscillation are studied in detail. The results show that the system of thermoacoustic oscillation involving vortex shedding is extremely sensitive to initial values, and there are a rich variety of nonlinear phenomena. With steady flow velocity increasing, the amplitude of pressure fluctuation augments generally. However, the similar structures are found in several intervals of steady flow velocity, and the amplitude first decreases and then increases. In particular, it is verified that the system oscillates periodically by integer (fp/fs) multiple of the vortex impinging frequency (fs), that is, the vortex-acoustic frequency locking with the number of revolutions fp/fs, which is found in experiment and can be regarded as an important characteristic of periodic thermoacoustic oscillation.
      Corresponding author: Zhang Jia-Zhong, jzzhang@xjtu.edu.cn
    • Funds: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-02-02), the State Key Laboratory of Compressor and Key Laboratory of Compressor of Anhui Province, China (Grant No. SKL-YSJ201802), and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities, China (Grant No. PY3A056)
    [1]

    Zinn B T, Lieuwen T C 2005 Combustion IInstabilities: Basic Concepts 210 3

    [2]

    Annaswamy A M, Ghoniem A F 2002 IEEE Control Syst. Mag. 22 37Google Scholar

    [3]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 44

    [4]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. 2 325Google Scholar

    [5]

    党南南, 张正元, 张家忠 2018 物理学报 67 134301Google Scholar

    Dang N N, Zhang Z Y, Zhang J Z 2018 Acta Phys. Sin. 67 134301Google Scholar

    [6]

    Rogers D E 1956 Jet Propul. 26 456Google Scholar

    [7]

    Hegde U G, Reuter D, Daniel B R, Zinn B T 1987 Combust. Sci. Technol. 55 125Google Scholar

    [8]

    Poinsot T J, Trouve A C, Veynante D P, Candel S M, Esposito E J 1987 J. Fluid Mech. 177 265Google Scholar

    [9]

    Sterling J D, Zukoski E E 1991 Combust. Sci. Technol. 77 225Google Scholar

    [10]

    Cohen J, Anderson T 1996 34th Aerospace Sciences Meeting and Exhibit Reno, January 15−18, 1996 p819

    [11]

    Speth R, Altay H, Hudgins D, Annaswamy A, Ghoniem A 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10, 2008 p1053

    [12]

    Bauwens L, Daily J W 1992 J. Propul. Power 8 264Google Scholar

    [13]

    Najm H N, Ghoniem 1993 Combust. Sci. Technol. 94 259Google Scholar

    [14]

    Menon S, Jou W H 1991 Combust. Sci. Technol. 75 53Google Scholar

    [15]

    Angelberger C, Veynante D, Egolfopoulos F 2000 Flow Turbul. Combust. 65 205Google Scholar

    [16]

    Qin F, He G Q, Li J, Liu P J 2007 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Cincinnati, OH, July 8–11, 2007 p5748

    [17]

    万少文, 何国强, 石磊 2011 固体火箭技术 34 32Google Scholar

    Wan S W, He G Q, Shi L 2011 Journal of Solid Rocket Technology 34 32Google Scholar

    [18]

    Matveev K I, Culick F E C 2003 Combust. Sci. Technol. 175 1059Google Scholar

    [19]

    Tulsyan B, Balasubramanian K, Sujith R I 2009 Combust. Sci. Technol. 181 457Google Scholar

    [20]

    Matveev K I. 2003 ASME 2003 International Mechanical Engineering Congress and Exposition Washington, DC, November 15−21, 2003 p119

    [21]

    Nair V, Sujith R I 2015 Proc. Combust. Inst. 35 3193Google Scholar

    [22]

    Seshadri A, Nair V, Sujith R I 2016 Combust. Theor. Model. 20 441Google Scholar

    [23]

    Singaravelu B, Mariappan S 2016 J. Fluid Mech. 801 597Google Scholar

    [24]

    Singaravelu B, Mariappan S 2017 Fifteenth Asian Congress of Fluid Mechanics Kuching, November 21–23, 2017 p12

    [25]

    Chakravarthy S R, Sivakumar R, Shreenivasan O J 2007 Sadhana 32 145Google Scholar

    [26]

    Dotson K W, Koshigoe S, Pace K K 1997 J. Propul. Power 13 197Google Scholar

  • 图 1  带后向台阶的燃烧室简化模型

    Figure 1.  The simplified model of combustor with backward facing step.

    图 2  计算模型验证[19]

    Figure 2.  Verification of computation model[19].

    图 3  相空间重构后的相图及庞加莱截面

    Figure 3.  Phase diagram after phase space reconstruction and Poincaré section.

    图 4  不同初始扰动下压力比的初始时间序列

    Figure 4.  Initial time series of pressure ratios under different initial disturbances.

    图 5  不同${u_0}$下的压力比的最大值和最小值

    Figure 5.  Maximum and minimum pressure ratios at different ${u_0}$.

    图 6  图5的局部放大图

    Figure 6.  Partial enlargement of Fig. 5.

    图 7  O1, O2, O3, O4, O5, O6$p'/{p_0}$时间序列 (a) u0 = 5.50; (b) u0 = 6.25; (c) u0 = 7.50; (d) u0 = 9.50; (e) u0 = 12.75; (f) u0 = 19.25

    Figure 7.  $p'/{p_0}$ time series of O1, O2, O3, O4, O5, O6: (a) u0 = 5.50; (b) u0 = 6.25; (c) u0 = 7.50; (d) u0 = 9.50; (e) u0 = 12.75; (f) u0 = 19.25

    图 8  S1, S2, S3, S4, S5, O7$p'/{p_0}$时间序列

    Figure 8.  $p'/{p_0}$ time series of S1, S2, S3, S4, S5, O7.

    图 9  涡声锁频

    Figure 9.  Vortex-acoustic frequency locking.

    图 10  ${f_{\rm{p}}}$${f_{\rm{s}}}$的关系及${f_{\rm{p}}}/{f_{\rm{s}}}$${u_0}$的变化图

    Figure 10.  The relationship between ${f_{\rm{p}}}$ and ${f_{\rm{s}}}$ and the change of ${f_{\rm{p}}}/{f_{\rm{s}}}$ with ${u_0}$.

    图 11  6个不同频率比下的$u'$-$p'/{p_0}$相图 (a) fs/fp = 0.1430; (b) fs/fp = 0.1669; (c) fs/fp = 0.2003; (d) fs/fp = 0.2500; (e) fs/fp = 0.3330; (f) fs/fp = 0.4999

    Figure 11.  $u'$-$p'/{p_0}$ phase diagram at six different frequency ratios: (a) fs/fp = 0.1430; (b) fs/fp = 0.1669; (c) fs/fp = 0.2003; (d) fs/fp = 0.2500; (e) fs/fp = 0.3330; (f) fs/fp = 0.4999.

  • [1]

    Zinn B T, Lieuwen T C 2005 Combustion IInstabilities: Basic Concepts 210 3

    [2]

    Annaswamy A M, Ghoniem A F 2002 IEEE Control Syst. Mag. 22 37Google Scholar

    [3]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 44

    [4]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. 2 325Google Scholar

    [5]

    党南南, 张正元, 张家忠 2018 物理学报 67 134301Google Scholar

    Dang N N, Zhang Z Y, Zhang J Z 2018 Acta Phys. Sin. 67 134301Google Scholar

    [6]

    Rogers D E 1956 Jet Propul. 26 456Google Scholar

    [7]

    Hegde U G, Reuter D, Daniel B R, Zinn B T 1987 Combust. Sci. Technol. 55 125Google Scholar

    [8]

    Poinsot T J, Trouve A C, Veynante D P, Candel S M, Esposito E J 1987 J. Fluid Mech. 177 265Google Scholar

    [9]

    Sterling J D, Zukoski E E 1991 Combust. Sci. Technol. 77 225Google Scholar

    [10]

    Cohen J, Anderson T 1996 34th Aerospace Sciences Meeting and Exhibit Reno, January 15−18, 1996 p819

    [11]

    Speth R, Altay H, Hudgins D, Annaswamy A, Ghoniem A 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10, 2008 p1053

    [12]

    Bauwens L, Daily J W 1992 J. Propul. Power 8 264Google Scholar

    [13]

    Najm H N, Ghoniem 1993 Combust. Sci. Technol. 94 259Google Scholar

    [14]

    Menon S, Jou W H 1991 Combust. Sci. Technol. 75 53Google Scholar

    [15]

    Angelberger C, Veynante D, Egolfopoulos F 2000 Flow Turbul. Combust. 65 205Google Scholar

    [16]

    Qin F, He G Q, Li J, Liu P J 2007 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Cincinnati, OH, July 8–11, 2007 p5748

    [17]

    万少文, 何国强, 石磊 2011 固体火箭技术 34 32Google Scholar

    Wan S W, He G Q, Shi L 2011 Journal of Solid Rocket Technology 34 32Google Scholar

    [18]

    Matveev K I, Culick F E C 2003 Combust. Sci. Technol. 175 1059Google Scholar

    [19]

    Tulsyan B, Balasubramanian K, Sujith R I 2009 Combust. Sci. Technol. 181 457Google Scholar

    [20]

    Matveev K I. 2003 ASME 2003 International Mechanical Engineering Congress and Exposition Washington, DC, November 15−21, 2003 p119

    [21]

    Nair V, Sujith R I 2015 Proc. Combust. Inst. 35 3193Google Scholar

    [22]

    Seshadri A, Nair V, Sujith R I 2016 Combust. Theor. Model. 20 441Google Scholar

    [23]

    Singaravelu B, Mariappan S 2016 J. Fluid Mech. 801 597Google Scholar

    [24]

    Singaravelu B, Mariappan S 2017 Fifteenth Asian Congress of Fluid Mechanics Kuching, November 21–23, 2017 p12

    [25]

    Chakravarthy S R, Sivakumar R, Shreenivasan O J 2007 Sadhana 32 145Google Scholar

    [26]

    Dotson K W, Koshigoe S, Pace K K 1997 J. Propul. Power 13 197Google Scholar

Metrics
  • Abstract views:  13928
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2019
  • Accepted Date:  19 September 2019
  • Available Online:  26 November 2019
  • Published Online:  05 December 2019
  • /

    返回文章
    返回