Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser energy coupling and partitioning of silver spheral hohlraum with one laser entrance hole

Yu Bo Yin Chuan-Sheng Sun Chuan-Kui Hou Li-Fei Song Tian-Ming Du Hua-Bing Guan Zan-Yang Zhang Wen-Hai Yuan Zheng Li Chao-Guang Dong Yun-Song Jiang Wei Huang Tian-Xuan Pu Yu-Dong Yan Ji Chen Zhong-Jing Yang Jia-Min Jiang Shao-En

Citation:

Laser energy coupling and partitioning of silver spheral hohlraum with one laser entrance hole

Yu Bo, Yin Chuan-Sheng, Sun Chuan-Kui, Hou Li-Fei, Song Tian-Ming, Du Hua-Bing, Guan Zan-Yang, Zhang Wen-Hai, Yuan Zheng, Li Chao-Guang, Dong Yun-Song, Jiang Wei, Huang Tian-Xuan, Pu Yu-Dong, Yan Ji, Chen Zhong-Jing, Yang Jia-Min, Jiang Shao-En
PDF
HTML
Get Citation
  • The matter can be instantaneously heated up to a high energy density state by the high power laser. When the high power laser is injected into silver spherical hohlraum, the high temperature radiation source formed in the hohlraum can drive the high velocity blast wave in the laboratory to study various astrophysical phenomena such as supernova remnants, stellar jets, etc. As the basis of laser driven blast wave experiments, the first experimental results of energy coupling and partitioning of silver spherical hohlraum with one laser entrance hole (LEH) on Shenguang Ⅲ prototype laser facility are introduced in this work. Four beams with 3.2 kJ of laser energy in a 1ns square laser pulse from the upper hemisphere are used to heat the silver spherical hohlraum targets. The silver spherical hohlraum targets are 800 μm-diameter and 650 μm-diameter LEH, and are fabricated by electroforming silver onto an acrylic mandrel. The laser coupling and partitioning to the targets are investigated by using the optical and X-ray diagnostics. The experimental results show that the radiation temperature is beyond 240 eV, the laser-to-X-ray conversion efficiency of silver hohlraum is 0.68 and the silver albedo is 0.83. With the driving of the high temperature radiation source, most of laser energy is coupled to the residual shell, and the high velocity blast wave can be generated. The laser energy not coupled to the target is lost through scattering light, emitting hot electrons and radiating X-rays. The experimental results show that the fraction of energy lost due to the scattering light is 15%, that due to emitting the total hot electrons is less than 1%, almost 30% of the laser energy is lost from the LEH by radiating the X-ray flux, almost 9% of the laser energy leaks from the spherical shell consisting of the 5.6 μm-thick Ag layer and 10 μm-thick CH layer through the X-ray radiation flux, and 45% of the laser energy is converted into the kinetic energy and internal energy of the remaining spherical shell. Therefore, more than 50% of the laser energy will be used to drive the high velocity blast wave in the subsequent experiments. After 950 ps, the silver plasma is concentrated in the center of the silver spherical hohlraum, which does not affect the injection of 1ns laser. The experiment on energy coupling and partitioning of a spherical silver hohlraum laser is carried out for the first time on Shenguang Ⅲ prototype laser facility, which lays a foundation for the subsequent experiments on laser driven blast wave.
      Corresponding author: Yu Bo, yubobnu@163.com
    [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [2]

    Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar

    [5]

    Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar

    [6]

    Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar

    [7]

    Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar

    [8]

    Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar

    [9]

    Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [10]

    Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar

    [11]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [12]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [13]

    Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar

    [14]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar

    [15]

    Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar

    [16]

    Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar

    [17]

    王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar

    Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [19]

    Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar

    [20]

    尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar

    Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar

    [21]

    Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar

    [22]

    曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar

    Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar

    [23]

    李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202

    [24]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [25]

    May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar

    [26]

    Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar

  • 图 1  实验和诊断排布

    Figure 1.  Arranging for experiment and diagnosis.

    图 2  散射光份额测量结果

    Figure 2.  Measurement results of scattering laser.

    图 3  辐射温度测量结果(a)及随角度变化规律(b)

    Figure 3.  Measurement results (a) and angular dependence (b) of radiation temperature.

    图 4  辐射温度拟合结果

    Figure 4.  Fitting results of radiation temperature.

    图 5  LEH和球壳漏失辐射流比较

    Figure 5.  Loss radiation flux of LEH and shell.

    图 6  LEH和球壳漏失X射线能谱比较

    Figure 6.  Radiation spectrum of LEH and shell.

    图 7  超热电子份额

    Figure 7.  The fraction of hot electron.

    图 8  冕区等离子体聚心图像 (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 ps

    Figure 8.  X-ray imaging of coronal plasma expansion: (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 ps.

  • [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [2]

    Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar

    [5]

    Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar

    [6]

    Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar

    [7]

    Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar

    [8]

    Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar

    [9]

    Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [10]

    Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar

    [11]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [12]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [13]

    Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar

    [14]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar

    [15]

    Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar

    [16]

    Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar

    [17]

    王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar

    Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [19]

    Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar

    [20]

    尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar

    Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar

    [21]

    Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar

    [22]

    曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar

    Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar

    [23]

    李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202

    [24]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [25]

    May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar

    [26]

    Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar

  • [1] Tao Hai-Yan, Chen Rui, Song Xiao-Wei, Chen Ya-Nan, Lin Jing-Quan. Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon. Acta Physica Sinica, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [2] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [3] Hou Peng-Cheng, Zhong Zhe-Qiang, Wen Ping, Zhang Bin. A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility. Acta Physica Sinica, 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [4] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [5] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [6] Jiang Shu-Qing, Ning Jia-Min, Chen Fa-Xin, Ye Fan, Xue Fei-Biao, Li Lin-Bo, Yang Jian-Lun, Chen Jin-Chuan, Zhou Lin, Qin Yi, Li Zheng-Hong, Xu Rong-Kun, Xu Ze-Ping. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum. Acta Physica Sinica, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [7] Liu Cheng, Wang Zhao-Hua, Shen Zhong-Wei, Zhang Wei, Teng Hao, Wei Zhi-Yi. A long ring regenerative cavity for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [8] Yue Ping, Zhang Qiang, Zhao Wen, Wang Jin-Song, Wang Run-Yuan, Yao Yu-Bi, Wang Sheng, Hao Xiao-Cui, Yang Fu-Lin, Wang Ruo-An. Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China. Acta Physica Sinica, 2013, 62(20): 209201. doi: 10.7498/aps.62.209201
    [9] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [10] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [11] Liu Chao, Cen Zhao-Feng, Li Xiao-Tong, Xu Wei-Cai, Shang Hong-Bo, Neng Fen, Chen Li. Ray ellipse method of analyzing the power and polarization state of partially polarized light. Acta Physica Sinica, 2012, 61(13): 134201. doi: 10.7498/aps.61.134201
    [12] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] Han Guo-Xia, Han Yi-Ping. Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam. Acta Physica Sinica, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] Li San-Wei, Yi Rong-Qing, Jiang Xiao-Hua, He Xiao-An, Chui Yan-Li, Liu Yong-Gang, Ding Yong-Kun, Liu Shen-Ye, Lan Ke, Li Yong-Sheng, Wu Chang-Shu, Gu Pei-Jun, Pei Wen-Bing, He Xian-Tu. Experimental study of radiation temperature for gold hohlraum heated with 1 ns,0.35 μm lasers on SG-Ⅲ prototype laser facility. Acta Physica Sinica, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [15] Ge Yu-Cheng. Relation of harmonic radiative energy and laser phase in high-order harmonic generation. Acta Physica Sinica, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [16] Wang Ke-Jia, Liu Jin-Song, Lü Jian-Tao. Evolution of emmitted light intensity in two-photon pumping random lasers. Acta Physica Sinica, 2007, 56(7): 3906-3910. doi: 10.7498/aps.56.3906
    [17] Sun Ke-Xu, Huang Tian-Xuan, Ding Yong-Kun, Yi Rong-Qing, Jiang Shao-En, Cui Yan-Li, Tang Xiao-Qing, Chen Jiu-Lin, Zhang Bao-Han, Zheng Zhi-Jian. . Acta Physica Sinica, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [18] Ding Ying-Chun, Lv Zhi-Wei, He Wei-Ming. The influence of the ratio of seed to pump energy on Brillouin amplification*. Acta Physica Sinica, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [19] Ding Yong-Kun, Li Wen-Hong, Jiang Xiao-Hua, Li San-Wei, Zhao Xue-Wei, Wang Hong-Bin, Ding Yao-Nan, Liu Zhong-Li, Tang Dao-Yuan, Zheng Zhi-Jian, Jiang Wen-Mian. . Acta Physica Sinica, 1995, 44(3): 350-356. doi: 10.7498/aps.44.350
    [20] WU ZHONG-XIANG. RADIATION DENSITY IN LASER CAVITY CALCULATED BY FIELD STRENGTH SUPERPOSITION. Acta Physica Sinica, 1980, 29(3): 392-394. doi: 10.7498/aps.29.392
Metrics
  • Abstract views:  6652
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2019
  • Accepted Date:  17 September 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回