Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-frequency sinusoidal chaotic neural network and its complex dynamics

Li Ru-Yi Wang Guang-Yi Dong Yu-Jiao Zhou Wei

Citation:

Multi-frequency sinusoidal chaotic neural network and its complex dynamics

Li Ru-Yi, Wang Guang-Yi, Dong Yu-Jiao, Zhou Wei
PDF
HTML
Get Citation
  • A large number of animal experiments show that there is irregular chaos in the biological nervous systems. An artificial chaotic neural network is a highly nonlinear dynamic system, which can realize a series of complex dynamic behaviors, optimize global search and neural computation, and generate pseudo-random sequences for information encryption. According to the superposition theory of sinusoidal signals with different frequencies of brain waves, a non-monotone activation function based on the multifrequency-frequency conversion sinusoidal function and a piecewise function is proposed to make a neural network more consistent with the biological characteristics. The analysis shows that by adjusting the parameters, the activation function can exhibit the EEG signals in its different states, which can simulate the rich and varying brain activities when the brain waves of different frequencies and types work at the same time. According to the activation function we design a new chaotic cellular neural network. The complexity of the chaotic neural network is analyzed by the structural complexity based SE algorithm and C0 algorithm. By means of Lyapunov exponential spectrum, bifurcation diagram and basin of attraction, the effects of the activation function’s parameters on its dynamic characteristics are analyzed in detail, and it is found that a series of complex phenomena appears in the chaotic neural network, such as many different types of chaotic attractors, coexistent chaotic attractors and coexistence limit cycles, which improves the performance of the chaotic neural network, and proves that the multi-frequency sinusoidal chaotic neural network has rich dynamic characteristics, so it has a good prospect in information processing, information encryption and other aspects.
      Corresponding author: Wang Guang-Yi, wanggyi@163.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 61771176)
    [1]

    孙为民, 王晖, 高涛 2017 电子世界 24 27Google Scholar

    Sun W M, Wang H, Gao T, Xia R R, Zhang L 2017 Elec. World. 24 27Google Scholar

    [2]

    Wang X Y, Li Z M 2019 Optlase. Eng. 115 107

    [3]

    董哲康, 杜晨杰, 林辉品, 赖俊昇, 胡小方, 段书凯 2020 电子与信息学报 42 835Google Scholar

    Dong Z K, Du C J, Lin H P, Lai J S, Hu X F, Duan S K 2020 J. Elec. Inform. Tech. 42 835Google Scholar

    [4]

    Bao H, Hu A H, Liu W B, Bao B C 2019 IEEE Trans. Neural. Netw. Learn. Syst. 31 502Google Scholar

    [5]

    王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Elec. Inform. Tech. 42 795Google Scholar

    [6]

    Freeman W J 1987 Biol. Cybern. 56 139Google Scholar

    [7]

    Chua L O, Yang L 1988 IEEE T Circuits 35 1257Google Scholar

    [8]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333Google Scholar

    [9]

    Chen L P, Hao Y, Huang T W, Yuan L G, Zheng S, Yin L S 2020 Neural Networks 125 174Google Scholar

    [10]

    Jiang C S, Chen Q 2020 Chaos Soliton Fract. 131 109

    [11]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310Google Scholar

    [12]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479Google Scholar

    [13]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204Google Scholar

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21Google Scholar

    [15]

    胡志强, 李文静, 乔俊飞 2016 物理学报 66 090502Google Scholar

    Hu Z Q, Li W J, Qiao J F 2016 Acta Phys. Sin. 66 090502Google Scholar

    [16]

    Sanei S, Chambers J A 2007 Comput. Intel. Neurosc. 2 1178

    [17]

    殷艳红 2008 硕士学位论文 (上海: 同济大学)

    Yin Y H 2008 M. S. Thesis (Shanghai: Tongji University) (in Chinese)

    [18]

    Pedro J C, De Carvalho N B 1999 IEEE Trans. Microw. Theory Tech. 47 2393Google Scholar

    [19]

    Hajji R, Beanregard F, Ghannouchi F M 1997 IEEE Trans. Microw Theory Tech. 45 1093Google Scholar

    [20]

    Jan V, Frans V, Marc B V 2000 56th ARFTG Conference Digest Boulder, AZ, USA, November 30−December 1, 2000 p1

    [21]

    Gulcehre C, Moczulski M, Denil M, Bengio Y 2017 International Joint Conference on Neural Networks Anchorage, AK, USA, May 14–19, 2017 p17010846

    [22]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. Stat. Non. Soft Matter Phys. 79 011915Google Scholar

    [23]

    Chen F, Xu J H, Gu F J 2000 Biol. Cybern. 83 355Google Scholar

    [24]

    孙克辉, 贺少波, 朱从旭, 何毅 2013 电子学报 41 1765Google Scholar

    Sui K H, He S B, Zhu C X, He Y 2013 Acta Elec. Sin. 41 1765Google Scholar

  • 图 1  MFCS图像

    Figure 1.  Graph of MFCS function.

    图 2  分段型函数+0.15 MFCS激活函数

    Figure 2.  Piecewise function + 0.15 MFCS activation function.

    图 3  幅值和频率随q, m, n的变化 (a)幅值Aq的变化; (b)频率1/${\varepsilon _1}$m的变化; (c)频率1/${\varepsilon _2}$n的变化

    Figure 3.  Change characteristic of the amplitude and frequency with q, m, n: (a) The change characteristic of the amplitude A with q; (b) the change characteristic of the frequency 1/${\varepsilon _1}$ with m; (c) the change characteristic of the frequency 1/${\varepsilon _2}$ with n.

    图 4  MFCS随参数m, n变化图像

    Figure 4.  Change characteristic of the MFCS with m and n.

    图 5  分段型函数、MFCS和MFCS激活函数及其导数图像 (a)分段型函数及其导函数; (b) MFCS及其导函数; (c) MFCS激活函数; (d) MFCS激活函数导函数.

    Figure 5.  Piecewise function, MFCS and MFCS activation function and its derivative image: (a) Piecewise function and its derivative function; (b) MFCS and its derivative function; (c) MFCS activation function; (d) MFCS activation function and its derivative function.

    图 6  混沌吸引子相图

    Figure 6.  Chaotic attractors of the MFCS chaotic cell neuron model.

    图 7  系统的三维复杂度 (a) SE图; (b) C0图

    Figure 7.  Three-dimensional complexity of the system: (a) The complexity of the SE; (b) the complexity of the C0.

    图 8  系统的二维复杂度 (a) Lyapunov指数谱; (b) SE图; (c) C0图

    Figure 8.  Two-dimensional complexity of the system: (a) Lyapunov exponents; (b) the complexity of SE; (c) the complexity of C0.

    图 10  系统随参数n变化的相图 (a) n = 0.2; (b) n = 0.53; (c) n = 0.61; (d) n = 0.7; (e) n = 1.62; (f) n = 2.98; (g) n = 3.16

    Figure 10.  Chaotic attractors of the system changing with parameter n: (a) n = 0.2; (b) n = 0.53; (c) n = 0.61; (d) n = 0.7; (e) n = 1.62; (f) n = 2.98; (g) n = 3.16.

    图 11  系统随参数c变化的分岔图和Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Figure 11.  Bifurcation diagram and Lyapunov exponential spectrum of the system varying with c: (a) Bifurcation diagram; (b) Lyapunov exponents.

    图 12  系统随参数c变化的相图 (a) c = 0.08; (b) c = 0.118; (c) c = 0.25; (d) c = 0.50; (e) c = 0.52; (f) c = 0.73

    Figure 12.  Chaotic attractors of the system changing with parameter c: (a) c = 0.08; (b) c = 0.118; (c) c = 0.25; (d) c = 0.50; (e) c = 0.52; (f) c = 0.73.

    图 13  系统随参数q变化的分岔图和Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Figure 13.  Bifurcation diagram and Lyapunov exponential spectrum of the system varying with q: (a) Bifurcation diagram; (b) Lyapunov exponents.

    图 14  系统随参数q变化的相图 (a) q = –1.26; (b) q = –0.75; (c) q = –0.38; (d) q = –0.25

    Figure 14.  Chaotic attractors of the system changing with parameter q: (a) q = –1.26; (b) q = –0.75; (c) q = –0.38; (d) q = –0.25.

    图 9  系统随参数n变化的分岔图和Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Figure 9.  Bifurcation diagram and Lyapunov exponential spectrum of the system varying with n: (a) Bifurcation diagram; (b) Lyapunov exponents.

    图 15  系统随参数c, q, n变化的几种典型相图 (a) c = 0.25, q = –1, n = 2.5; (b) c = 0.73, q = –1, n = 2.5; (c) c = 0.52, q = –1, n = 2.5; (d) c = 0.25, q =–1, n = 0.715; (e) c = 0.118, q = –1, n = 2.5; (f) c = 0.25, q = –1, n = 0.2; (g) c = 0.73, q = –0.9, n = 2.5; (h) c = 0.25, q = –1, n = 2.98; (i) c = 0.25, q = –1, n = 3.16; (j) c = 0.08, q = –1, n = 2.5; (k) c = –0.25, q = –0.9, n = 2.5; (l) c = 0.25, q = –1, n = 0.61

    Figure 15.  Several typical chaotic attractors of the system changing with parameter c, q, n: (a) c = 0.25, q = –1, n = 2.5; (b) c = 0.73, q = –1, n = 2.5; (c) c = 0.52, q = –1, n = 2.5; (d) c = 0.25, q =–1, n = 0.715; (e) c = 0.118, q = –1, n = 2.5; (f) c = 0.25, q = –1, n = 0.2; (g) c = 0.73, q = –0.9, n = 2.5; (h) c = 0.25, q = –1, n = 2.98; (i) c = 0.25, q = –1, n = 3.16; (j) c = 0.08, q = –1, n = 2.5; (k) c = –0.25, q = –0.9, n = 2.5; (l) c = 0.25, q = –1, n = 0.61.

    图 16  系统随初始值y(0)变化的分岔图和Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Figure 16.  Bifurcation diagram and Lyapunov exponential spectrum of the system varying with the initial value y(0): (a) Bifurcation diagram; (b) Lyapunov exponents.

    图 17  系统随初始值y(0)变化的相图-共存吸引子

    Figure 17.  Chaotic attractors of the system changing with the initial value y(0)-coexistence attractor.

    图 18  系统在x-y-z平面的共存吸引子 (a) 混沌吸引子共存; (b) 混沌吸引子与极限环共存; (c) 极限环共存

    Figure 18.  Coexistence attractor of the system in the x-y-z plane: (a) Chaotic attractors coexist; (b) chaos attractors coexist with limit cycles; (c) limit cycles coexist.

    图 19  系统随x(0), y(0), z(0)变化的吸引盆 (a)系统随x(0), y(0)变化的吸引盆; (b)系统随x(0), z(0)变化的吸引盆

    Figure 19.  Suction basin of the system varying with x(0), y(0) and z(0): (a) The suction basin of the system varying with x(0), y(0); (b) the suction basin of the system varying with x(0), z(0).

    表 1  频率${\varepsilon _1}, {\varepsilon _2}$n的变化

    Table 1.  Change characteristic of the frequency ${\varepsilon _1}$ and ${\varepsilon _2}$ with n.

    类型频率/Hz${\varepsilon _1}$(0)${\varepsilon _2}$(0)
    $\delta $ 0.50—3.01 0.32 0.64
    $\theta $ 3.98—6.97 0.04 0.08
    $\alpha $ 7.96—15.09 0.02 0.04
    $\beta $ 15.92—30.18 0.01 0.02
    $\gamma $ 36.17—100.31 0.0044 0.0088
    DownLoad: CSV

    表 2  图6相对应的参数取值

    Table 2.  Values of parameters corresponding Fig. 6

    参数参数值参数参数值参数参数值参数参数值
    S13 –1.0 S41 98 S65 4.0 m 10.6
    S14 –1.0 S44 –105 S66 –4.0 n 0.1
    S22 –1.3 S51 1.0 A24 5.0 ${\varepsilon _1}$ 0.04
    S23 2.0 S52 18 A 0.5 ${\varepsilon _2} $ 0.02
    S31 13.0 S55 –1 c 0.25 φ $ - {{\text{π}} / {{4}}} $
    S32 –14.0 S62 100 q –1.0
    DownLoad: CSV

    表 3  参数c, q, n取不同值时, 其他参数的取值

    Table 3.  Values of other parameters when changing c, q, n.

    参数参数值参数参数值
    A245${\varepsilon _1}$0.04
    A0.5${\varepsilon _2}$0.02
    m10.6φ$ - {{\text{π}} / {\rm{4}}}$
    DownLoad: CSV

    表 4  图18相对应的参数的取值

    Table 4.  Values of parameters corresponding Fig. 18.

    参数参数值参数参数值
    A245q–1
    A0.5${\varepsilon _1}$0.04
    m5.6${\varepsilon _2}$0.02
    n2.5φ$ - {{\text{π}} / {\rm{4}}}$
    DownLoad: CSV

    表 5  初始条件的取值

    Table 5.  Values of initial conditions.

    性质类型初始条件
    混沌吸引子与
    混沌吸引子
    Ic型、
    IIc
    (0.2, 0.2, 0.3, 0.4, 0.5, 0.6),
    (0.52, 0.2, 0.3, 0.4, 0.5, 0.6)
    Ic型、
    IIIc
    (0.2, 0.2, 0.3, 0.4, 0.5, 0.6),
    (–0.5, –1.2, 0.3, 0.4, 0.5, 0.6)
    IIc型、IIIc(0.52, 0.2, 0.3, 0.4, 0.5, 0.6),
    (–0.5, –1.2, 0.3, 0.4, 0.5, 0.6)
    混沌吸引子
    与极限环
    IIc型、Ip(0.82, 1.5, 0.3, 0.4, 0.5, 0.6),
    (5.5, 5.81, 0.305, 0.4, 0.5, 0.6001)
    IIIc型、IIp(–0.8, –1.5, 0.3, 0.4, 0.5, 0.6),
    (0.1, –1.51, 0.3, 0.4, 0.5, 0.6)
    极限环与
    极限环
    Ip型、IIp(5.5, 5.81, 0.305, 0.4, 0.5, 0.6001),
    (0.1, –1.51, 0.3, 0.4, 0.5, 0.6)
    DownLoad: CSV
  • [1]

    孙为民, 王晖, 高涛 2017 电子世界 24 27Google Scholar

    Sun W M, Wang H, Gao T, Xia R R, Zhang L 2017 Elec. World. 24 27Google Scholar

    [2]

    Wang X Y, Li Z M 2019 Optlase. Eng. 115 107

    [3]

    董哲康, 杜晨杰, 林辉品, 赖俊昇, 胡小方, 段书凯 2020 电子与信息学报 42 835Google Scholar

    Dong Z K, Du C J, Lin H P, Lai J S, Hu X F, Duan S K 2020 J. Elec. Inform. Tech. 42 835Google Scholar

    [4]

    Bao H, Hu A H, Liu W B, Bao B C 2019 IEEE Trans. Neural. Netw. Learn. Syst. 31 502Google Scholar

    [5]

    王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Elec. Inform. Tech. 42 795Google Scholar

    [6]

    Freeman W J 1987 Biol. Cybern. 56 139Google Scholar

    [7]

    Chua L O, Yang L 1988 IEEE T Circuits 35 1257Google Scholar

    [8]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333Google Scholar

    [9]

    Chen L P, Hao Y, Huang T W, Yuan L G, Zheng S, Yin L S 2020 Neural Networks 125 174Google Scholar

    [10]

    Jiang C S, Chen Q 2020 Chaos Soliton Fract. 131 109

    [11]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310Google Scholar

    [12]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479Google Scholar

    [13]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204Google Scholar

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21Google Scholar

    [15]

    胡志强, 李文静, 乔俊飞 2016 物理学报 66 090502Google Scholar

    Hu Z Q, Li W J, Qiao J F 2016 Acta Phys. Sin. 66 090502Google Scholar

    [16]

    Sanei S, Chambers J A 2007 Comput. Intel. Neurosc. 2 1178

    [17]

    殷艳红 2008 硕士学位论文 (上海: 同济大学)

    Yin Y H 2008 M. S. Thesis (Shanghai: Tongji University) (in Chinese)

    [18]

    Pedro J C, De Carvalho N B 1999 IEEE Trans. Microw. Theory Tech. 47 2393Google Scholar

    [19]

    Hajji R, Beanregard F, Ghannouchi F M 1997 IEEE Trans. Microw Theory Tech. 45 1093Google Scholar

    [20]

    Jan V, Frans V, Marc B V 2000 56th ARFTG Conference Digest Boulder, AZ, USA, November 30−December 1, 2000 p1

    [21]

    Gulcehre C, Moczulski M, Denil M, Bengio Y 2017 International Joint Conference on Neural Networks Anchorage, AK, USA, May 14–19, 2017 p17010846

    [22]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. Stat. Non. Soft Matter Phys. 79 011915Google Scholar

    [23]

    Chen F, Xu J H, Gu F J 2000 Biol. Cybern. 83 355Google Scholar

    [24]

    孙克辉, 贺少波, 朱从旭, 何毅 2013 电子学报 41 1765Google Scholar

    Sui K H, He S B, Zhu C X, He Y 2013 Acta Elec. Sin. 41 1765Google Scholar

  • [1] Xiu Chun-Bo, Liu Chang, Guo Fu-Hui, Cheng Yi, Luo Jing. Control strategy and application of hysteretic chaotic neuron and neural network. Acta Physica Sinica, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [2] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [3] Gu Hua-Guang, Xi Lei, Jia Bing. Identification of a stochastic neural firing rhythm lying in period-adding bifurcation and resembling chaos. Acta Physica Sinica, 2012, 61(8): 080504. doi: 10.7498/aps.61.080504
    [4] Zhang Meng, Lü Ling, Lü Na, Fan Xin. Chaos synchronization between complex networks with uncertain structures and unknown parameters. Acta Physica Sinica, 2012, 61(22): 220508. doi: 10.7498/aps.61.220508
    [5] Liu Shi-Xu, Guan Hong-Zhi, Yan Hai. Chaotic behavior in the dynamical evolution of network traffic flow and its control. Acta Physica Sinica, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [6] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [7] Li He, Yang Zhou, Zhang Yi-Min, Wen Bang-Chun. Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of radial basis function neural networks. Acta Physica Sinica, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [8] Li Qin, Cai Li, Feng Chao-Wen. Cellular neural network with hybrid single-electron and MOS transistors architecture and its application. Acta Physica Sinica, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [9] Rong Hai_Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcations of safe basins and chaos in Flickering oscillator under multi-frequency harmonic and bounded noise excitation. Acta Physica Sinica, 2008, 57(3): 1506-1513. doi: 10.7498/aps.57.1506
    [10] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [11] Feng Chao-Wen, Cai Li, Li Qin. Implementation and application of cellular neural networks based on single electron device. Acta Physica Sinica, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [12] Feng Chao-Wen, Cai Li, Kang Qiang. Study of chaos based on single electron device. Acta Physica Sinica, 2008, 57(10): 6155-6161. doi: 10.7498/aps.57.6155
    [13] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [14] Guo Xian-Feng, Zhang Jia-Shu. Keyed one-way Hash function construction based on the chaotic dynamic S-Box. Acta Physica Sinica, 2006, 55(9): 4442-4449. doi: 10.7498/aps.55.4442
    [15] Tan Wen, Wang Yao-Nan. Direct adaptive fuzzy-neural control of unknown chaotic system. Acta Physica Sinica, 2004, 53(12): 4087-4091. doi: 10.7498/aps.53.4087
    [16] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [17] Wang Hong-Xia, He Chen. Dynamical behaviour of a cellular neural network. Acta Physica Sinica, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
    [18] Zhang Qiang, Gao Lin, Wang Chao, Yuan Tao, Xu Jin. Study of the dynamics of a first-order cellular neural networks with delay. Acta Physica Sinica, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
    [19] Ren Hai-Peng, Liu Ding. . Acta Physica Sinica, 2002, 51(5): 982-987. doi: 10.7498/aps.51.982
    [20] WANG HONG-XIA, YU JUE-BANG. ANALYSIS OF STABILITY FOR EQUILIBRIUM OFCELLULAR NEURAL NETWORKS. Acta Physica Sinica, 2001, 50(12): 2303-2306. doi: 10.7498/aps.50.2303
Metrics
  • Abstract views:  7111
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2020
  • Accepted Date:  21 August 2020
  • Available Online:  03 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回