Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground state structures and properties of Be atom doped boron clusters BeB$ _{ n}^{\bf 0/-} $($ n \bf = 10$–15)

Li Shi-Xiong Chen De-Liang Zhang Zheng-Ping Long Zheng-Wen

Citation:

Ground state structures and properties of Be atom doped boron clusters BeB$ _{ n}^{\bf 0/-} $($ n \bf = 10$–15)

Li Shi-Xiong, Chen De-Liang, Zhang Zheng-Ping, Long Zheng-Wen
PDF
HTML
Get Citation
  • A theoretical study of geometrical structures and electronic properties of Be atom doped boron clusters BeB$ _n^{0/-} $(n = 10–15) is performed using the CALYPSO approach for the global minimum search followed by density functional theory calculations. It is found that the global minima obtained for the BeB$ _{10}^{0/-} $, BeB$ _{11}^{-} $, BeB$ _{12}^{0/-} $, and BeB$ _{14}^{-} $ clusters correspond to the quasi-planar or planar structures. However, the global minima obtained for the BeB11, BeB13, BeB$ _{13}^{-} $, BeB14 clusters correspond to the half-sandwich, cone, cage, squashed tubular structures, respectively. Interestingly, both the neutral and anionic BeB$ _{15}^{0/-} $ clusters have the axially chiral isomers which are chiral with degenerate enantiomers. Natural population analyses reveal that partial charge on Be atom transfer to boron atoms. The average binding energy values of BeB$ _n^{0/-} $ (n = 10–15) indicate that anionic clusters are overall more stable than the corresponding neutral ones, and both neutral and anionic clusters show the same trend that the stability increases gradually with the increase of B atoms number n. Chemical bonding analyses of closed-shell BeB10, BeB$ _{11}^{-} $, BeB12 clusters reveal that the σ bonds stabilize whole molecular skeleton, and delocalized π bonds render the structure more stable. Furthermore, the three quasi-planar closed-shell clusters possess 3 delocalized π bonds, which quite surprisingly follow the 4m + 2 Hückel rule for aromaticity. Average polarizability of single atom for each quasi-planar or planar structure is larger than other structures, it indicates that quasi-planar or planar structure has stronger electron delocalization. Specifically, BeB$ _{13}^{-} $ and BeB$ _{14}^{-} $ with large first static hyperpolarizability can lead to the remarkable NLO response. The calculated spectra indicate that BeB$ _n^{0/-} $(n = 10–15) have the meaningful characteristic peaks which can be compared with future experimental values. Our work enriches the database of geometrical structures of doped boron clusters and can provide much insight into the new doped boron clusters.
      Corresponding author: Li Shi-Xiong, leesxoptics@163.com
    • Funds: Project Supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804065) and the Central Guiding Local Science and Technology Development Foudation of China (Grant No. QK ZYD[2019]4012)
    [1]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [2]

    Iijima S 1991 Nature 354 56Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Boustani I 1997 Phys. Rev. B 55 16426Google Scholar

    [5]

    Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I 2002 J. Chem. Phys. 117 7917Google Scholar

    [6]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [7]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [8]

    Bean D E, Fowler P W 2009 J. Phys. Chem. C 113 15569Google Scholar

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D 2014 Phys. Chem. Chem. Phys. 16 18282Google Scholar

    [10]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349Google Scholar

    [11]

    Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550Google Scholar

    [12]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113Google Scholar

    [13]

    Casillas R, Baruah T, Zope R R 2013 Chem. Phys. Lett. 557 15Google Scholar

    [14]

    Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32Google Scholar

    [15]

    Lü J, Wang Y, Zhu L, Ma Y 2014 Nanoscale 6 11692Google Scholar

    [16]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727Google Scholar

    [17]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941Google Scholar

    [18]

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 RSC Advances 7 38526Google Scholar

    [19]

    Dong H, Hou T, Lee S T, Li Y 2015 Sci. Rep. 5 9952Google Scholar

    [20]

    An Y, Zhang M, Wu D, Fu Z, Wang T, Xia C 2016 Phys. Chem. Chem. Phys. 18 12024Google Scholar

    [21]

    Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D 2016 Sci. Rep. 6 35518Google Scholar

    [22]

    Shakerzadeh E, Biglari Z, Tahmasebi E 2016 Chem. Phys. Lett. 654 76Google Scholar

    [23]

    Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [24]

    Li S, Zhang Z, Long Z, Chen D 2019 ACS Omega 4 5705Google Scholar

    [25]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [26]

    Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A 118 8098Google Scholar

    [27]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [28]

    Wang W, Guo Y D, Yan X H 2016 RSC Advances 6 40155Google Scholar

    [29]

    Saha R, Kar S, Pan S, Martinez G G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971Google Scholar

    [30]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [31]

    Adamo C, Barone V 1999 J. Chem. Phys. 110 6158Google Scholar

    [32]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [34]

    Zubarev D Y, Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207Google Scholar

    [35]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [37]

    Cheng L 2012 J. Chem. Phys. 136 104301Google Scholar

    [38]

    Mayer I 1983 Chem. Phys. Lett. 97 270Google Scholar

    [39]

    Schmider H L, Becke A D 2000 J. Mol. Struct. THEOCHEM 527 51Google Scholar

  • 图 1  团簇结构图, 分图中上图为正面观察、下图为侧面观察 (a) BeB10; (b) BeB$ _{10}^- $; (c) BeB11; (d) BeB$ _{11}^- $; (e) BeB12; (f) BeB$ _{12}^- $; (g) BeB13; (h) BeB$ _{13}^- $; (i) BeB14; (j) BeB$ _{14}^- $; (k) BeB15 I; (l) BeB$ _{15}^- $ I; (m) BeB15 II; (n) BeB$ _{15}^- $ II

    Figure 1.  Structures of doped boron clusters BeB$_{n}^{ 0/–}$(n = 10−15): (a) BeB10; (b) BeB$ _{10}^- $; (c) BeB11; (d) BeB$ _{11}^- $; (e) BeB12; (f) BeB$ _{12}^- $; (g) BeB13; (h) BeB$ _{13}^- $; (i) BeB14; (j) BeB$ _{14}^- $; (k) BeB15 I; (l) BeB$ _{15}^- $ I; (m) BeB15 II; (n) BeB$ _{15}^- $ II.

    图 2  分子轨道图 (a) HOMO BeB10; (b) LUMO BeB10; (c) HOMO BeB$_{11}^{-}$; (d) LUMO BeB$_{11}^{-}$; (e) HOMO BeB12; (f) LUMO BeB12; (g) HOMO BeB$_{13}^{-}$; (h) LUMO BeB$_{13}^{-}$; (i) HOMO BeB14; (j) LUMO BeB14; (k) HOMO BeB$_{15}^{-}$ I; (l) LUMO BeB$_{15}^{-}$ I; (m) HOMO BeB$_{15}^{-}$ II; (n) LUMO BeB$_{15}^{-}$ II

    Figure 2.  Molecular orbitals: (a) HOMO BeB10; (b) LUMO BeB10; (c) HOMO BeB$ _{11}^- $; (d) LUMO BeB$ _{11}^- $; (e) HOMO BeB12; (f) LUMO BeB12; (g) HOMO BeB$ _{13}^- $; (h) LUMO BeB$ _{13}^- $; (i) HOMO BeB14; (j) LUMO BeB14; (k) HOMO BeB$ _{15}^- $ I; (l) LUMO BeB$_{15}^{-}$ I; (m) HOMO BeB$_{15}^{-}$ II; (n) LUMO BeB$_{15}^{-}$ II.

    图 3  BeB10的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Figure 3.  Bonding patterns of BeB10 from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 4  BeB$_{11}^{-}$的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Figure 4.  Bonding patterns of BeB$_{11}^{-}$ from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 5  BeB12的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Figure 5.  Bonding patterns of BeB12 from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 6  定域化轨道函数LOL, 等值面数值为0.5 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Figure 6.  Localized orbital locator, the isovalue is set to 0. 5: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12.

    图 7  定域化轨道函数LOL, 等值面数值为0.56 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Figure 7.  Localized orbital locator, the isovalue is set to 0. 56: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12.

    图 8  定域化轨道函数LOL, 等值面数值为0.6 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Figure 8.  Localized orbital locator, the isovalue is set to 0.6. (a) BeB10; (b) BeB$_{11}^{-}$ (c) BeB12.

    图 9  红外光谱 (a) BeB10; (b) BeB$_{10}^{-}$; (c) BeB11; (d) BeB$_{11}^{-}$; (e) BeB12; (f) BeB$_{12}^{-}$; (g) BeB13; (h) BeB$_{13}^{-}$; (i) BeB14; (j) BeB$_{14}^{-}$; (k) BeB15 I; (l) BeB$_{15}^{-}$ I

    Figure 9.  Calculated infrared spectra: (a) BeB10; (b) BeB$_{10}^{-}$; (c) BeB11; (d) BeB$_{11}^{-}$; (e) BeB12; (f) BeB$_{12}^{-}$; (g) BeB13; (h) BeB$_{13}^{-}$; (i) BeB14; (j) BeB$_{14}^{-}$; (k) BeB15 I; (l) BeB$_{15}^{-}$ I.

    图 10  紫外可见光谱 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12; (d) BeB$_{13}^{-}$; (e) BeB14; (f) BeB$_{15}^{-}$ I

    Figure 10.  Calculated UV-Vis spectra: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12; (d) BeB$_{13}^{-}$; (e) BeB14; (f) BeB$_{15}^{-}$ I.

    图 11  紫外可见光谱 (a) BeB$_{10}^{-}$; (b) BeB11; (c) BeB$_{12}^{-}$; (d) BeB13; (e) BeB$_{14}^{-}$; (f) BeB15 I

    Figure 11.  Calculated UV-Vis spectra: (a) BeB$_{10}^{-}$; (b) BeB11; (c) BeB$_{12}^{-}$; (d) BeB13; (e) BeB$_{14}^{-}$; (f) BeB15 I.

    表 1  BeB$_{n}^{ 0/–}$ (n = 10—15)的几何参数

    Table 1.  Geometrical parameters of BeB$ _{n}^{ 0/–} $(n = 10−15).

    Symmetry最短Be—B键长/Å结构
    BeB10Cs1.83准平面结构
    BeB$ _{10}^- $Cs1.80准平面结构
    BeB11Cs1.97半三明治结构
    BeB$ _{11}^- $Cs1.86准平面结构
    BeB12Cs1.85准平面结构
    BeB$ _{12}^- $C2v1.83平面结构
    BeB13C2v1.93圆锥结构
    BeB$ _{13}^- $Cs1.80笼型结构
    BeB14C21.88压扁的管状结构
    BeB$ _{14}^- $C21.84准平面结构
    BeB15 IC11.87三维结构
    BeB15 IIC11.87三维结构
    BeB$ _{15}^- $ I C1 1.84 三维结构
    BeB$ _{15}^- $ IIC11.84三维结构
    DownLoad: CSV

    表 2  BeB$ _{n}^{ 0/–} $(n = 10—15)的最低谐振频率和平均结合能

    Table 2.  The lowest frequencies and average binding energy of BeB$ _{n}^{ 0/–} $(n = 10−15).

    BeB10BeB$_{10}^{-}$BeB11BeB$ _{11}^{-} $BeB12BeB$ _{12}^{-} $BeB13BeB$ _{13}^{-} $BeB14BeB$ _{14}^{-} $BeB15 I, IIBeB$ _{15}^{-} $ I, II
    最低谐振频率/cm–111710923665119651712282431037391
    平均结合能/eV4.715.064.785.164.895.174.915.194.975.224.975.26
    DownLoad: CSV

    表 3  BeB$ _{n}^{ 0/–} $(n = 10—15)的偶极矩, Eg, NPA电荷. 上标a, b 代表自旋向上和自旋向下电子

    Table 3.  The dipole moments (μ), energy gaps (Eg), and NPA charges on doped atom of BeB$ _{n}^{ 0/–} $(n = 10−15). The markers “a” and “b” denote the alpha and beta electrons, respectively.

    BeB10BeB$_{10}^{-}$BeB11BeB$_{11}^{-}$BeB12BeB$_{12}^{-}$BeB13BeB$_{13}^{-}$BeB14BeB$_{14}^{-}$BeB15 I, IIBeB$_{15}^{-}$ I, II
    μ/ Debye0.800.581.491.591.310.660.221.122.570.861.951.88
    Eg/eV2.942.81a
    2.63b
    3.10a
    2.94b
    3.482.931.67a
    3.08b
    2.93a
    3.55b
    3.333.801.85a
    1.99b
    3.23a
    2.26b
    3.35
    NPA charges
    on doped atom
    1.621.641.561.371.641.661.721.601.691.681.701.67
    DownLoad: CSV

    表 4  BeB$ _n^{0/-} $(n = 10—15)的极化率

    Table 4.  Polarizabilities of BeB$ _n^{0/-} $(n = 10−15).

    各项同性平均极化率α每个原子的平均极化率$\bar \alpha $各项异性极化率Δα第一超极化率β0偶极矩方向上的投影值βprj
    BeB10167.3215.21124.78133.79–59.10
    BeB$ _{10}^- $196.0817.83142.11216.95–113.85
    BeB11153.1712.7663.19319.45155.00
    BeB$ _{11}^- $203.9016.99139.92233.54199.10
    BeB12196.3115.10145.5124.986.10
    BeB$ _{12}^- $223.7717.21164.05254.97–254.97
    BeB13174.0812.4348.6261.41–26.71
    BeB$ _{13}^- $210.5615.04119.68941.20–901.01
    BeB14191.4412.7673.13450.89–450.89
    BeB$ _{14}^- $260.0917.34203.63958.78–958.78
    BeB15 I 215.11 13.44 122.84 601.71 –597.78
    BeB15 II215.1213.44122.87604.10–600.31
    BeB$ _{15}^- $ I 235.61 14.73 130.97 516.03 –223.98
    BeB$ _{15}^- $ II235.6214.73130.93517.15–224.33
    DownLoad: CSV

    表 5  BeB$ _n^{0/-} $(n = 10—15)的激发特性

    Table 5.  The excitation properties of BeB$ _n^{0/-} $(n = 10−15).

    振子强度最大的激发态的波长/nm
    (振子强度, 第几激发态)
    第一激发态的波长/nm
    (振子强度)
    第一个吸收峰位置/nm
    (对应第几激发态)
    BeB10252 (0.2108, 22)748 (0.0003)748 (1)
    BeB$ _{10}^- $313 (0.1205, 34)1038 (0.0001)887 (5)
    BeB11331 (0.0077, 22)859 (0.0022)859 (1)
    BeB$ _{11}^- $242 (0.3008, 27)548 (0)510 (2)
    BeB12282 (0.2870, 22)702 (0.0038)702 (1)
    BeB$ _{12}^- $346 (0.0119, 32)3201 (0.0003)3201 (1)
    BeB13308 (0.0377, 31)800 (0.0015)800 (1)
    BeB$ _{13}^- $234 (0.0875, 36)582 (0.0003)582 (1)
    BeB14311 (0.1049, 15)468 (0.0041)468 (1)
    BeB$ _{14}^- $533 (0.0472, 14)1984 (0)982 (4—6)
    BeB15 I339 (0.0295, 33)1292 (0.0006)1122 (1—2)
    BeB$ _{15}^- $ I276 (0.0954, 24)531 (0.0027)531 (1)
    DownLoad: CSV
  • [1]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [2]

    Iijima S 1991 Nature 354 56Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Boustani I 1997 Phys. Rev. B 55 16426Google Scholar

    [5]

    Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I 2002 J. Chem. Phys. 117 7917Google Scholar

    [6]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [7]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [8]

    Bean D E, Fowler P W 2009 J. Phys. Chem. C 113 15569Google Scholar

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D 2014 Phys. Chem. Chem. Phys. 16 18282Google Scholar

    [10]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349Google Scholar

    [11]

    Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550Google Scholar

    [12]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113Google Scholar

    [13]

    Casillas R, Baruah T, Zope R R 2013 Chem. Phys. Lett. 557 15Google Scholar

    [14]

    Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32Google Scholar

    [15]

    Lü J, Wang Y, Zhu L, Ma Y 2014 Nanoscale 6 11692Google Scholar

    [16]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727Google Scholar

    [17]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941Google Scholar

    [18]

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 RSC Advances 7 38526Google Scholar

    [19]

    Dong H, Hou T, Lee S T, Li Y 2015 Sci. Rep. 5 9952Google Scholar

    [20]

    An Y, Zhang M, Wu D, Fu Z, Wang T, Xia C 2016 Phys. Chem. Chem. Phys. 18 12024Google Scholar

    [21]

    Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D 2016 Sci. Rep. 6 35518Google Scholar

    [22]

    Shakerzadeh E, Biglari Z, Tahmasebi E 2016 Chem. Phys. Lett. 654 76Google Scholar

    [23]

    Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [24]

    Li S, Zhang Z, Long Z, Chen D 2019 ACS Omega 4 5705Google Scholar

    [25]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [26]

    Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A 118 8098Google Scholar

    [27]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [28]

    Wang W, Guo Y D, Yan X H 2016 RSC Advances 6 40155Google Scholar

    [29]

    Saha R, Kar S, Pan S, Martinez G G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971Google Scholar

    [30]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [31]

    Adamo C, Barone V 1999 J. Chem. Phys. 110 6158Google Scholar

    [32]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [34]

    Zubarev D Y, Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207Google Scholar

    [35]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [37]

    Cheng L 2012 J. Chem. Phys. 136 104301Google Scholar

    [38]

    Mayer I 1983 Chem. Phys. Lett. 97 270Google Scholar

    [39]

    Schmider H L, Becke A D 2000 J. Mol. Struct. THEOCHEM 527 51Google Scholar

  • [1] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [2] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] Du Jian-Bin, Wu De-Qi, Tang Yan-Lin, Long Zheng-Wen. Molecular structure and spectrum of dibutyl phthalate in an external electric field. Acta Physica Sinica, 2015, 64(7): 073101. doi: 10.7498/aps.64.073101
    [4] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [5] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] Yao Jian-Gang, Gong Bao-An, Wang Yuan-Xu. Dissociative adsorptions of NO on Yn (n=1–12) clusters. Acta Physica Sinica, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [7] Zhang Zheng-Jie, Meng Da-Wei, Wu Xiu-Ling, Zheng Jian-Ping, Fan Xiao-Yu, Liu Wei-Ping, Huang Li-Wu, He Kai-Hua. The electronic structure and infrared spectroscopy of Al-H and Fe-H codoped rutile-type TiO2. Acta Physica Sinica, 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [8] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [9] Wu Dong-Lan, Xie An-Dong, Wan Hui-Jun, Ruan Wen. Study on geometrical structure and spectrum ofpolymerization borohydride (BH3)n(n=13). Acta Physica Sinica, 2011, 60(10): 103101. doi: 10.7498/aps.60.103101
    [10] Zhu Hai-Na, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Kong Chao, Yan Guang, Gong Wei. Influence of well structure on efficiency of organic light-emitting diodes. Acta Physica Sinica, 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [11] Tang Hui-Shuai, Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing. The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [12] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [13] Gu Juan, Wang Shan-Ying, Gou Bing-Cong. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [14] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [15] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [16] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong. Electronic structures of hydrogenated and oxygenated boron-doped diamond films. Acta Physica Sinica, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [17] Lei Xue-Ling, Zhu Heng-Jiang, Ge Gui-Xian, Wang Xian-Ming, Luo You-Hua. Structures and magnetism of BnNi(n=6—12) clusters from density-functional theory. Acta Physica Sinica, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [18] Zou Jun, Huang Tao-Hua, Wang Jun, Zhang Lian-Han, Zhou Sheng-Ming, Xu Jun. The structure analysis of novel Ti: LiAlO2 crystal. Acta Physica Sinica, 2006, 55(7): 3536-3539. doi: 10.7498/aps.55.3536
    [19] Wang Ying-Wei, Wang Zi-Dong, Cheng Hao-Bo. Structure and spectrum of the novel laser crystal Yb:KY(WO4)2. Acta Physica Sinica, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [20] Liu Yu-Zhen, Luo Cheng-Lin. Structure and growth pattern of Si cluster (n=11—32): a tight-binding molecular dynamics simulation. Acta Physica Sinica, 2004, 53(2): 592-595. doi: 10.7498/aps.53.592
Metrics
  • Abstract views:  7466
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2020
  • Accepted Date:  29 June 2020
  • Available Online:  28 August 2020
  • Published Online:  05 October 2020

/

返回文章
返回