Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of different sea surface wind speeds on performance of quantum satellite-to-ship communication

Nie Min Zhang Fan Yang Guang Zhang Mei-Ling Sun Ai-Jing Pei Chang-Xing

Citation:

Effects of different sea surface wind speeds on performance of quantum satellite-to-ship communication

Nie Min, Zhang Fan, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
Get Citation
  • In the ocean atmosphere boundary layer far from the continent, marine aerosols generally include two types: sea salt aerosols and secondary marine aerosols. The sea salt aerosols, also called sea salt droplets, stay in the atmosphere for a short time. The sea salt aerosols are produced by the splashing of waves caused by sea breeze on the sea surface. Quantum satellite-to-ship communication is one of the important application scenarios of quantum secret communication. The quantum satellite-to-ship communication is an important part of building a global quantum communication network. In the South China Sea, because the change of wind speed will cause a sharp change in the concentration of aerosol particles and the sharp change of the concentration of aerosol particles can change its own extinction characteristics, the change of aerosol extinction characteristics will inevitably lead to a dramatic attenuation of the satellite-to-ship’s quantum link performance. However, the research on the relationship between wind speed on the sea surface and quantum satellite satellite-to-ship communication channel parameters has not been carried out so far. In this paper, based on the Gras model of wind speeds on the sea surface and aerosol, the quantitative relationship between wind speed and satellite-to-ship quantum channel error rate, channel capacity and channel average fidelity are established respectively. The simulation results show that when the transmission distance is constant, as the sea surface wind speed increases, the channel bit error rate increases; as the wind speed increases, the channel capacity of quantum satellite satellite-to-ship communication decreases; when the source probability is constant, as the wind speed increases, the average fidelity of the channel shows a decreasing trend. When the wind speeds are 4 m/s and 20 m/s, the oceanic atmospheric channel error rate, channel capacity, and channel average fidelity are respectively 4.62 × 10–3 and 4.91 × 10–3, 0.957 and 0.65, 0.999 and 0.974. It can be seen that the wind speed has a significant effect on the performance of maritime quantum communication. Therefore, when quantum communication over the ocean, in order to improve the reliability of communication, the parameters of the system should be adaptively adjusted according to the wind speed.
      Corresponding author: Zhang Fan, 13310997259@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711)
    [1]

    Dai J N, Liu Y M, Wang P, Fu X, Xia M, Wang T 2020 Atmos. Environ. 236 117604Google Scholar

    [2]

    Plauškaitė K, Špirkauskaitė N, Byčenkienė S, Kecorius S, Jasinevičienė D, Petelski T, Zielinski T, Andriejauskienė J, Barisevičiūtė R, Garbaras A, Makuch P, Dudoitis V, Ulevicius V 2017 Mar. Chem. 190 13Google Scholar

    [3]

    Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y, Tanimoto H 2016 Atmos. Environ. 142 324Google Scholar

    [4]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [5]

    Vergoossen T, Loarte S, Bedington R, Kuiper H, Ling A 2020 Acta Astronaut. 173 164Google Scholar

    [6]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高建存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [7]

    Xue P, Wang K K, Wang X P 2017 Sci. Rep. 7 661Google Scholar

    [8]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [9]

    谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运 2019 物理学报 68 090302Google Scholar

    Gu W Y, Zhao S H, Dong C, Zhu Z D, Qu Y Y 2019 Acta Phys. Sin. 68 090302Google Scholar

    [10]

    聂敏, 潘越, 杨光, 孙爱晶, 禹赛雅, 张美玲, 裴昌幸 2018 物理学报 67 140305Google Scholar

    Nie M, Pan Y, Yang G, Sun A J, Yu S Y, Zhang M L, Pei C Y 2018 Acta Phys. Sin. 67 140305Google Scholar

    [11]

    卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 140302Google Scholar

    Wei R Y, Nie M, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 140302Google Scholar

    [12]

    Tian P F, Cao X J, Zhang L, Wang H B, Shi J S, Huang Z W, Zhou T, Liu H 2015 Atmos. Environ. 117 212Google Scholar

    [13]

    Dumka U C, Ningombam S S, Kaskaoutis D G, Madhavan B L, Song H J, Angchuk D, Jorphail S 2020 Sci. Total Environ. 734 139354Google Scholar

    [14]

    鲁先洋 2017 博士学位论文 (合肥: 中国科学技术大学)

    Lu X Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    耿蒙 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Geng M 2017 M.S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    王菲菲, 李学彬, 郑显明, 张文忠, 罗涛, 朱文越, 成巍, 邓志武 2019 红外与激光工程 48 89Google Scholar

    Wang F F, Li X B, Zheng X M, Zhang W Z, Luo T, Zhu W Y, Cheng W, Deng Z W 2019 Infrared Laser Eng. 48 89Google Scholar

    [17]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 165

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sin. 40 165

    [18]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 16Google Scholar

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Phtonica Sin. 46 16Google Scholar

    [19]

    张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90−110页

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing: Science Press) pp90−110 (in Chinese)

    [20]

    尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第224−228页

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) pp224−228 (in Chinese)

    [21]

    尹浩, 韩阳 2013 量子通信原理与技术(北京: 电子工业出版社) 第76−83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp76−83 (in Chinese)

    [22]

    尼尔森, 庄著(郑大钟, 赵千川译)2005 量子计算和量子信息(二) (北京: 清华大学出版社)第57−60页

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing: TsingHua University Press) pp57−60 (in Chinese)

  • 图 1  量子卫星星舰通信

    Figure 1.  Quantum satellite-to-ship communication.

    图 2  南海气溶胶粒子谱分布

    Figure 2.  Size distribution of aerosol particle in the South China Sea.

    图 3  不同风速下的海洋气溶胶粒子谱分布

    Figure 3.  Size distribution of marine aerosol particle under different wind speeds.

    图 4  信道误码率与风速、传输距离的关系

    Figure 4.  Relationship between channel bit error rate and wind speed、transmission distance.

    图 5  信道容量与风速的关系

    Figure 5.  Relationship between channel capacity and wind speed.

    图 6  信道平均保真度与风速、信源概率的关系

    Figure 6.  Relationship between channel average fidelity and wind speed、source probability.

    表 1  南海气溶胶粒子谱分布各参量取值情况

    Table 1.  The value of each parameter of size distribution of aerosol particle in the South China Sea.

    Mode${N_{\rm{o}}}$${r_{\rm{g} } }/$μm${\sigma _{\rm{g}}}$
    Fine mode$254.93$$0.09$$0.53$
    Middle mode$7.96$$1$$0.7$
    DownLoad: CSV

    表 2  信道误码率各参量取值情况

    Table 2.  The value of each parameter of channel bit error rate.

    ${F_{\rm{s}}}$${R_{\rm{r}}}$$\mu $${P_{\rm{a}}}$${T_{\rm{a}}}$${\eta _{\rm{d}}}$${F_{\rm{m}}}$${n_1}$${n_2}$$\theta $
    $0.5$$0.5$$1$$0.5$$1$$0.65$$1$${10^{ - 3}}$${10^{ - 6}}$$\pi /6$
    DownLoad: CSV
  • [1]

    Dai J N, Liu Y M, Wang P, Fu X, Xia M, Wang T 2020 Atmos. Environ. 236 117604Google Scholar

    [2]

    Plauškaitė K, Špirkauskaitė N, Byčenkienė S, Kecorius S, Jasinevičienė D, Petelski T, Zielinski T, Andriejauskienė J, Barisevičiūtė R, Garbaras A, Makuch P, Dudoitis V, Ulevicius V 2017 Mar. Chem. 190 13Google Scholar

    [3]

    Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y, Tanimoto H 2016 Atmos. Environ. 142 324Google Scholar

    [4]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [5]

    Vergoossen T, Loarte S, Bedington R, Kuiper H, Ling A 2020 Acta Astronaut. 173 164Google Scholar

    [6]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高建存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [7]

    Xue P, Wang K K, Wang X P 2017 Sci. Rep. 7 661Google Scholar

    [8]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [9]

    谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运 2019 物理学报 68 090302Google Scholar

    Gu W Y, Zhao S H, Dong C, Zhu Z D, Qu Y Y 2019 Acta Phys. Sin. 68 090302Google Scholar

    [10]

    聂敏, 潘越, 杨光, 孙爱晶, 禹赛雅, 张美玲, 裴昌幸 2018 物理学报 67 140305Google Scholar

    Nie M, Pan Y, Yang G, Sun A J, Yu S Y, Zhang M L, Pei C Y 2018 Acta Phys. Sin. 67 140305Google Scholar

    [11]

    卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 140302Google Scholar

    Wei R Y, Nie M, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 140302Google Scholar

    [12]

    Tian P F, Cao X J, Zhang L, Wang H B, Shi J S, Huang Z W, Zhou T, Liu H 2015 Atmos. Environ. 117 212Google Scholar

    [13]

    Dumka U C, Ningombam S S, Kaskaoutis D G, Madhavan B L, Song H J, Angchuk D, Jorphail S 2020 Sci. Total Environ. 734 139354Google Scholar

    [14]

    鲁先洋 2017 博士学位论文 (合肥: 中国科学技术大学)

    Lu X Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    耿蒙 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Geng M 2017 M.S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    王菲菲, 李学彬, 郑显明, 张文忠, 罗涛, 朱文越, 成巍, 邓志武 2019 红外与激光工程 48 89Google Scholar

    Wang F F, Li X B, Zheng X M, Zhang W Z, Luo T, Zhu W Y, Cheng W, Deng Z W 2019 Infrared Laser Eng. 48 89Google Scholar

    [17]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 165

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sin. 40 165

    [18]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 16Google Scholar

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Phtonica Sin. 46 16Google Scholar

    [19]

    张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90−110页

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing: Science Press) pp90−110 (in Chinese)

    [20]

    尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第224−228页

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) pp224−228 (in Chinese)

    [21]

    尹浩, 韩阳 2013 量子通信原理与技术(北京: 电子工业出版社) 第76−83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp76−83 (in Chinese)

    [22]

    尼尔森, 庄著(郑大钟, 赵千川译)2005 量子计算和量子信息(二) (北京: 清华大学出版社)第57−60页

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing: TsingHua University Press) pp57−60 (in Chinese)

  • [1] Gong Li-Hua, Chen Zhen-Yong, Xu Liang-Chao, Zhou Nan-Run. Bi-directional semi-quantum secure direct communication protocol based on high-dimensional single-particle states. Acta Physica Sinica, 2022, 71(13): 130304. doi: 10.7498/aps.71.20211702
    [2] Dong Yao, Ji Ai-Ling, Zhang Guo-Feng. Evolution of quantum coherence of qutrit-qutrit system under correlated depolarizing channels. Acta Physica Sinica, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [3] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [4] Zheng Xiao-Tong, Guo Li-Xin, Cheng Ming-Jian1\2, Li Jiang-Ting. Atmospheric channel model of maritime visible light communication based on repeated coding. Acta Physica Sinica, 2018, 67(21): 214206. doi: 10.7498/aps.67.20181112
    [5] Zheng Xiao-Yi, Long Yin-Xiang. Cluster state based controlled quantum secure direct communication protocol with controllable channel capacity. Acta Physica Sinica, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [6] Nie Min, Tang Shou-Rong, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influence of the ionospheric sporadic E layer on the performance of quantum satellite communication in the mid latitude region. Acta Physica Sinica, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [7] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [8] Zhang Yong-Yan, Wu Jiu-Hui, Zeng Tao, Zhong Hong-Min. Mechanism of eliminating the aerosol haze particles by using laser gradient force. Acta Physica Sinica, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [9] Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication. Acta Physica Sinica, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [10] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao. Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [11] Zhang Xue-Hai, Wei He-Li, Dai Cong-Ming, Cao Ya-Nan, Li Xue-Bin. Influence of aspect ratio on the light scattering properties of spherical aerosol particles. Acta Physica Sinica, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [12] Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation. Acta Physica Sinica, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [13] Fan Meng, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Zhang Ying, Han Dong. Scattering properties of non-spherical particles in the CO2 shortwave infrared band. Acta Physica Sinica, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [14] Liu Yu-Ling, Man Zhong-Xiao, Xia Yun-Jie. Quantum secret sharing of an arbitrary two-particle entangled state via non-maximally entangled channels. Acta Physica Sinica, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [15] Zuo Hao-Yi, Yang Jing-Guo. Retrieving of aerosol size distribution based on the measurement of aerosol optical depth. Acta Physica Sinica, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [16] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [17] Xia Zhu-Hong, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Bao Jian, Xiong Lu-Yuan. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [18] ZHANG XING-YUAN, CHAN WONG LAI-WAH, CHOY CHUNG-LOONG. POLARIZATION DISTRIBUTION AND PROCESS OF DEPOLARIZATION IN VDF/TrFE FERROELECTRIC COPOLYMERS AND ITS COMPOSITES BY MEANS OF LASER INTENSITY MODULATION METHOD. Acta Physica Sinica, 1999, 48(9): 1760-1766. doi: 10.7498/aps.48.1760
    [19] WU QUAN-DE. FORMATION AND GROWTH OF COLLOIDAL PARTICLES AND CONCENTRATION OF DONOR ATOMS IN IONIC CRYSTALS (II). Acta Physica Sinica, 1966, 22(1): 17-28. doi: 10.7498/aps.22.17
    [20] WU QUAN-DE. FORMATION AND GROWTH OF COLLOIDAL PARTICLES AND CONCENTRATION OF DONOR ATOMS IN IONIC CRYSTALS (I). Acta Physica Sinica, 1966, 22(1): 1-16. doi: 10.7498/aps.22.1
Metrics
  • Abstract views:  4717
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2020
  • Accepted Date:  10 October 2020
  • Available Online:  02 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回