Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Joint angle and polarization parameter estimation for the new designed bistatic multiple-input multiple-output radar with long dipoles and large loops

Xie Qian-Peng Pan Xiao-Yi Chen Ji-Yuan Xiao Shun-Ping

Citation:

Joint angle and polarization parameter estimation for the new designed bistatic multiple-input multiple-output radar with long dipoles and large loops

Xie Qian-Peng, Pan Xiao-Yi, Chen Ji-Yuan, Xiao Shun-Ping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, a new designed bistatic electromagnetic vector sensors multiple-input multiple-output radar with long dipoles and large loops is proposed to avoid the low inefficient electromagnetically radiation efficiency of original bistatic electromagnetic vector sensors multiple-input multiple-output radar with short dipoles $\left(({L}/{\lambda }) < 0.1\right)$ and small loops $\left(2\pi ({R}/{\lambda }) < 0.1\right)$. The new transmitting and receiving sensors are designed based on the effective length of the electromagnetic vector sensor in practical engineering application. Firstly, the Parallel Factor trilinear alternating least square algorithm is proposed to make full use of the spatial-temporal tensor model for received data after matching filtering. And, the closed-form automatically paired two dimensional Direction of Departure and two dimensional Direction of Arrival can be obtained with the aid of the Parallel Factor trilinear alternating least square algorithm. Furthermore, due to the vector-cross-product Poynting-vector algorithm is failed in the condition of the new designed electromagnetic vector sensors with long dipoles and large loops, an efficient blind estimation method without requiring the prior knowledge of the dipoles’ electric length ${L}/{\lambda }$ and loops’ electric radius ${R}/{\lambda }$ is detailed derived to deal with the estimation of the transmitting azimuth angle, transmitting polarization angle, transmitting polarization phase difference, receiving azimuth angle, receiving polarization angle and receiving polarization phase difference. And, the estimated transmitting azimuth angle, transmitting polarization angle, transmitting polarization phase difference, receiving azimuth angle, receiving polarization angle and receiving polarization phase difference are also automatically paired without additional angle parameter pair matching process. Finally, the expression of the Cramer Rao Bound is detailed derived for the designed new bistatic electromagnetic vector sensors multiple-input multiple-output radar. The detailed derived Cramer Rao Bound can provide a benchmark for angle parameter and polarization parameter estimation performance. Additionally, simulation results are conducted to verify the better angle parameter and polarization parameter estimation accuracy of the proposed method for the new designed bistatic electromagnetic vector sensors multiple-input multiple-output radar with long dipoles and large loops. Through theoretical analysis and simulation results, it is can be founded that the length of the electric dipole and the circumference of the loops should be suitable selected to guarantee a better estimation accuracy. Thus, the interesting work in this paper can further promote the engineering application of electromagnetic vector sensor in bistatic multiple-input multiple-output radar.
      Corresponding author: Xie Qian-Peng, 13721038905@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701507, 61890542, 61890540)
    [1]

    Wong K T, Yuan X 2010 IEEE Trans. Signal Process. 59 160

    [2]

    Yuan X 2012 IEEE Trans. Signal Process. 60 1270Google Scholar

    [3]

    Song Y, Yuan X, Wong K T 2014 IEEE Trans. Signal Process. 62 1028Google Scholar

    [4]

    Yuan X 2014 Signal Process. 102 265Google Scholar

    [5]

    Zhang Z, He J, Shu T, Yu W 2018 IEEE Sensors Lett. 2 1

    [6]

    Chintagunta S, Ponnusamy P 2018 Signal Process. 147 163Google Scholar

    [7]

    Liu T T, Wen F Q, Shi J P, Gong Z H, Xu H 2019 IEEE Access 7 120533Google Scholar

    [8]

    Mao C X, Shi J P, Wen F Q 2019 IEEE Access 7 163119Google Scholar

    [9]

    Wen F, Shi J, Zhang Z 2020 IEEE Trans. Veh. Technol. 69 1626Google Scholar

    [10]

    Wen F, Shi J 2020 Signal Process. 175 1

    [11]

    谢前朋, 潘小义, 陈吉源, 肖顺平 2020 物理学报 7 074302Google Scholar

    Xie Q P, Pan X Y, Chen J Y, Xiao S P 2020 Acta Phys. Sin. 7 074302Google Scholar

    [12]

    Chintagunta S, Ponnusamy P 2018 IET Signal Process. 12 447Google Scholar

    [13]

    Chintagunta S, Subramaniam K, Ponnusamy P 2019 Signal Process. 165 262Google Scholar

    [14]

    Wong K T, Song Y, Fulton C J, Tam W Y 2017 IEEE Trans. Antennas Propag. 65 6057Google Scholar

    [15]

    Li B, Bai B, Zhang Q 2018 IEEE Access 6 9807Google Scholar

    [16]

    Liu B, Li B, Feng Y 2019 IEEE Access 7 27075Google Scholar

    [17]

    Khan S, Wong K T, Song Y, Tam W Y 2018 IEEE Trans. Antennas Propag. 6 3046

    [18]

    Khan S, Wong K T 2019 IEEE Trans. Antennas Propag. 67 5569Google Scholar

    [19]

    Salman K, Wong K T 2020 IEEE Trans. Antennas Propag. 62 1028

    [20]

    Sidiropoulos N D, Bro R, Gianakis G B 2000 IEEE Trans. Signal Process. 48 2377Google Scholar

    [21]

    Tree H L 2002 Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processsing (New York: Wiley) p927

  • 图 1  三正交电偶极子和三正交磁环示意图

    Figure 1.  Three orthogonal dipoles and three orthogonal loops.

    图 2  长电偶极子和大磁圆环组成的新型双基地EMVS-MIMO雷达系统示意图

    Figure 2.  New designed bistatic EMVS-MIMO radar system with long dipoles and large loops.

    图 3  新型阵列 EMVS-MIMO 雷达系统旋转不变关系构建

    Figure 3.  The rotational invariance relationship for new designed bistatic EMVS-MIMO radar system.

    图 4  新型双基地EMVS-MIMO雷达角度参数和极化参数估计星座图 (a) 发射俯仰角和接收俯仰角; (b) 发射方位角和接收方位角; (c) 发射俯仰角和发射方位角; (d) 发射极化角和极化相位差; (e) 接收俯仰角和接收方位角; (f) 接收极化角和极化相位差

    Figure 4.  Scatter plot of the angle parameters and polarization parameters by using the new designed bistatic EMVS-MIMO radar: (a) Scatter plot of the transmit elevation angle and receive elevation angle ; (b) scatter plot of the transmit azimuth angle and receive azimuth angle; (c) scatter plot of the transmit elevation angle and azimuth angle ; (d) scatter plot of the transmit polarization angle and polarization phase difference; (e) scatter plot of the receive elevation angle and azimuth angle ; (f) scatter plot of the receive polarization angle and polarization phase difference.

    图 5  新型阵列角度和极化参数估计性能随信噪比的变化 (a) 角度估计均方误差随信噪比的变化; (b) 角度检测概率随信噪比的变化; (c) 极化估计均方误差随信噪比的变化; (d) 极化检测概率随信噪比的变化

    Figure 5.  The effect of the SNR for the proposed new bistatic EMVS-MIMO radar: (a) Curves of angle’s RMSE versus SNR; (b) curves of angle’s PSD versus SNR; (c) curves of polarization’s RMSE versus SNR; (d) curves of polarization’s PSD versus SNR.

    图 6  新型阵列角度和极化参数估计性能随快拍数的变化  (a) 角度估计均方误差随快拍数的变化; (b) 角度检测概率随快拍数的变化; (c) 极化估计均方误差随快拍数的变化; (d) 极化检测概率随快拍数的变化

    Figure 6.  The effect of the snapshot for the proposed new bistatic EMVS-MIMO radar: (a) Curves of angle’s RMSE versus snapshot; (b) curves of angle’s PSD versus snapshot; (c) curves of polarization’s RMSE versus snapshot; (d) curves of polarization’s PSD versus snapshot.

    图 7  不同电偶极子的长度对角度和极化参数估计性能的影响 (a) 角度估计均方误差随电偶极子长度的变化; (b) 角度检测概率随电偶极子长度的变化; (c) 极化估计均方误差随电偶极子长度的变化; (d) 极化检测概率随电偶极子长度的变化

    Figure 7.  The effect of the various ${L}/{\lambda }$ for the proposed new bistatic EMVS-MIMO radar: (a) Curves of angle’s RMSE versus various ${L}/{\lambda }$; (b) curves of angle’s PSD versus various ${L}/{\lambda }$; (c) curves of polarization’s RMSE versus various ${L}/{\lambda }$; (d) curves of polarization’s PSD versus various ${L}/{\lambda }$.

    图 8  不同磁偶极子周长对角度参数和极化参数估计性能的影响 (a) 角度估计均方误差随磁偶极子周长的变化; (b) 角度检测概率随磁偶极子周长的变化; (c) 极化估计均方误差随磁偶极子周长的变化; (d) 极化检测概率随磁偶极子周长的变化

    Figure 8.  The effect of the various $2{\text{π}}({R}/{\lambda })$ for the proposed new bistatic EMVS-MIMO radar: (a) Curves of angle’s RMSE versus various $2{\text{π}}({R}/{\lambda })$; (b) curves of angle’s PSD versus various $2{\text{π}}({R}/{\lambda })$; (c) curves of polarization’s RMSE versus various $2{\text{π}}({R}/{\lambda })$; (d) curves of polarization’s PSD versus various $2{\text{π}}({R}/{\lambda })$.

    表 1  目标回波参数表

    Table 1.  Parameters of target signals.


    方位角
    $\left( {{\theta _{\rm{t}}}, {\theta _{\rm{r}}}} \right)$
    俯仰角
    $\left( {{\phi _{\rm{t}}}, {\phi _{\rm{r}}}} \right)$
    极化角
    $\left( {{\gamma _{\rm{t}}}, {\gamma _{\rm{r}}}} \right)$
    极化相位差
    $\left( {{\eta _{\rm{t}}}, {\eta _{\rm{r}}}} \right)$
    1${{{{40}^ \circ }}/{{{24}^ \circ }}}$${{{{15}^ \circ }}/{{{21}^ \circ }}}$${{{{10}^ \circ }}/{{{42}^ \circ }}}$${{{{36}^ \circ }}/{{{17}^ \circ }}}$
    2${{{{20}^ \circ }}/{{{38}^ \circ }}}$${{{{25}^ \circ }}/{{{32}^ \circ }}}$${{{{22}^ \circ }}/{{{33}^ \circ }}}$${{{{48}^ \circ }}/{{{27}^ \circ }}}$
    3${{{{30}^ \circ }}/{{{16}^ \circ }}}$${{{{35}^ \circ }}/{{{55}^ \circ }}}$${{{{45}^ \circ }}/{{{60}^ \circ }}}$${{{{56}^ \circ }}/{{{39}^ \circ }}}$
    4${{{{50}^ \circ }}/{{{60}^ \circ }}}$${{{5^ \circ }}/{{{10}^ \circ }}}$${{{{30}^ \circ }}/{{{20}^ \circ }}}$${{{{10}^ \circ }}/{{{50}^ \circ }}}$
    DownLoad: CSV
  • [1]

    Wong K T, Yuan X 2010 IEEE Trans. Signal Process. 59 160

    [2]

    Yuan X 2012 IEEE Trans. Signal Process. 60 1270Google Scholar

    [3]

    Song Y, Yuan X, Wong K T 2014 IEEE Trans. Signal Process. 62 1028Google Scholar

    [4]

    Yuan X 2014 Signal Process. 102 265Google Scholar

    [5]

    Zhang Z, He J, Shu T, Yu W 2018 IEEE Sensors Lett. 2 1

    [6]

    Chintagunta S, Ponnusamy P 2018 Signal Process. 147 163Google Scholar

    [7]

    Liu T T, Wen F Q, Shi J P, Gong Z H, Xu H 2019 IEEE Access 7 120533Google Scholar

    [8]

    Mao C X, Shi J P, Wen F Q 2019 IEEE Access 7 163119Google Scholar

    [9]

    Wen F, Shi J, Zhang Z 2020 IEEE Trans. Veh. Technol. 69 1626Google Scholar

    [10]

    Wen F, Shi J 2020 Signal Process. 175 1

    [11]

    谢前朋, 潘小义, 陈吉源, 肖顺平 2020 物理学报 7 074302Google Scholar

    Xie Q P, Pan X Y, Chen J Y, Xiao S P 2020 Acta Phys. Sin. 7 074302Google Scholar

    [12]

    Chintagunta S, Ponnusamy P 2018 IET Signal Process. 12 447Google Scholar

    [13]

    Chintagunta S, Subramaniam K, Ponnusamy P 2019 Signal Process. 165 262Google Scholar

    [14]

    Wong K T, Song Y, Fulton C J, Tam W Y 2017 IEEE Trans. Antennas Propag. 65 6057Google Scholar

    [15]

    Li B, Bai B, Zhang Q 2018 IEEE Access 6 9807Google Scholar

    [16]

    Liu B, Li B, Feng Y 2019 IEEE Access 7 27075Google Scholar

    [17]

    Khan S, Wong K T, Song Y, Tam W Y 2018 IEEE Trans. Antennas Propag. 6 3046

    [18]

    Khan S, Wong K T 2019 IEEE Trans. Antennas Propag. 67 5569Google Scholar

    [19]

    Salman K, Wong K T 2020 IEEE Trans. Antennas Propag. 62 1028

    [20]

    Sidiropoulos N D, Bro R, Gianakis G B 2000 IEEE Trans. Signal Process. 48 2377Google Scholar

    [21]

    Tree H L 2002 Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processsing (New York: Wiley) p927

  • [1] Xie Qian-Peng, Pan Xiao-Yi, Chen Ji-Yuan, Xiao Shun-Ping. Efficient angle and polarization parameter estimaiton for electromagnetic vector sensors multiple-input multiple-output radar by using sparse array. Acta Physica Sinica, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [2] Wang Ting, Zhao Yong-Jun, Lai Tao, Wang Jian-Tao. Performance analysis of polarization-space-time adaptive processing for airborne polarization array multiple-input multiple-output radar. Acta Physica Sinica, 2017, 66(4): 048401. doi: 10.7498/aps.66.048401
    [3] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [4] Leng Xue-Dong, Ba Bin, Lu Zhi-Yu, Wang Da-Ming. Sparse reconstruction time delay estimation algorithm based on backtracking filter. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [5] Huang Yu, Liu Yu-Feng, Peng Zhi-Min, Ding Yan-Jun. Research on particle swarm optimization algorithm with characteristic of quantum parallel and its application in parameter estimation for fractional-order chaotic systems. Acta Physica Sinica, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [6] Li Jing, Zhao Yong-Jun, Li Dong-Hai. Time delay estimation using Markov Chain Monte Carlo method. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [7] Wang Liu, He Wen-Ping, Wan Shi-Quan, Liao Le-Jian, He Tao. Evolutionary modeling for parameter estimation for chaotic system. Acta Physica Sinica, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [8] Guo Bao-Feng, Shang Chao-Xuan, Wang Jun-Ling, Gao Mei-Guo, Fu Xiong-Jun. Correction of migration through resolution cell in bistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle. Acta Physica Sinica, 2014, 63(23): 238406. doi: 10.7498/aps.63.238406
    [9] Huang Cong, Sun Da-Jun, Zhang Dian-Lun, Teng Ting-Ting. Optimizations for robust low sidelobe beamforming of bistatic multiple-input multiple-output virtual array. Acta Physica Sinica, 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [10] Lin Jian, Xu Li. Parameter estimation for chaotic systems based on hybrid biogeography-based optimization. Acta Physica Sinica, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [11] Wang Wei, Qiao Gang, Xing Si-Yu. A selective mapping peak-to-average power ratio reduction algorithm without side information for underwater acoustic multiple-input multiple-output orthogonal frequency division multiplexing communication. Acta Physica Sinica, 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [12] Wang Shi-Yuan, Feng Jiu-Chao. A novel method of estimating parameter and its application to blind separation of chaotic signals. Acta Physica Sinica, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [13] Long Wen, Jiao Jian-Jun. Parameter estimation for chaotic system based on evolution algorithm with hybrid crossover. Acta Physica Sinica, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [14] Cao Xiao-Qun, Song Jun-Qiang, Zhang Wei-Min, Zhao Jun, Zhang Li-Lun. Estimating parameters of chaotic system with variational method. Acta Physica Sinica, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [15] Chen Zheng, Zeng Yi-Cheng, Fu Zhi-Jian. A novel parameter estimation method of signal in chaotic background. Acta Physica Sinica, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [16] Wang Jun-Yan, Huang De-Xian. Parameter estimation for chaotic systems based on hybrid differential evolution algorithm. Acta Physica Sinica, 2008, 57(5): 2755-2760. doi: 10.7498/aps.57.2755
    [17] Jia Fei-Lei, Xu Wei, Du Lin. Generalized synchronization of different orders of chaotic systems with unknown parameters and parameter identification. Acta Physica Sinica, 2007, 56(10): 5640-5647. doi: 10.7498/aps.56.5640
    [18] Li Li-Xiang, Peng Hai-Peng, Yang Yi-Xian, Wang Xiang-Dong. Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm. Acta Physica Sinica, 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [19] Gao Fei, Tong Heng-Qing. Parameter estimation for chaotic system based on particle swarm optimization. Acta Physica Sinica, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [20] Dai Dong, Ma Xi-Kui, Li Fu-Cai, You Yong. . Acta Physica Sinica, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
Metrics
  • Abstract views:  6082
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2020
  • Accepted Date:  28 August 2020
  • Available Online:  09 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回