Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discharge characteristics of argon brush plasma plume operated at atmospheric pressure

Yang Li-Jun Song Cai-Hong Zhao Na Zhou Shuai Wu Jia-Cun Jia Peng-Ying

Citation:

Discharge characteristics of argon brush plasma plume operated at atmospheric pressure

Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying
cstr: 32037.14.aps.70.20202091
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Atmospheric pressure non-equilibrium low-temperature plasma has been widely used in biomedicine, surface treatment and other fields, which has attracted the attention of researchers extensively. As one of the important methods to generate such a plasma, the plasma jet has become a popular method, which can generate a remote plasma plume at the nozzle through introducing a rare gas flow. However, plasma plume has a small diameter, which results in deficiency for the large-scale surface treatment. A dielectric barrier discharge device with three electrodes is utilized to produce a large brush-shaped plasma plume (50.0 mm × 40.0 mm) downstream of flowing argon under the combined excitation of an alternate current (AC) voltage and a negative bias voltage, thereby increasing the plume scale. The results show that the luminescence intensity of the plasma plume increases with AC peak voltage increasing. By fast photography implemented with an intensified charge coupled device (ICCD), it is found that the plasma plume is composed of temporally superposed branched-streamers. The ICCD images also reveal that the number of branches increases with AC peak voltage increasing. Moreover, the waveforms of AC voltage and light emission signal recorded simultaneously indicate that the plasma plume initiates once per AC voltage cycle, which occurs in the positive half cycle of the applied voltage. With AC peak voltage increasing, the duration and intensity of discharge pulse increase, which results from more branches of the branched streamer. Besides, optical emission spectrum in a range from 300 nm to 850 nm mainly includes OH (A2Σ+–X2Π) peaked at 308.0 nm, the second positive system of N2 (C3Πu–B3Πg), Ar I (4p–4s), and O I (3p3 P–3s3 S) at 844.6 nm. Based on the optical emission spectrum, the plasma parameters such as vibrational temperature and intensity ratio of spectral lines (correlated with electron density and electron temperature) are investigated. Besides, the variation of concentration of oxygen atoms in the plasma plume with experimental parameters is investigated by optical actinometry. The results indicate that the concentration of oxygen atoms first increases and then decreases with the distance increasing along the argon flow direction or with oxygen content of the working gas increasing. In addition, the concentration of oxygen atoms increases with AC peak voltage increasing. All these results are discussed qualitatively. These results are of great importance in modifying the plasma surface on a large scale.
      Corresponding author: Jia Peng-Ying, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875121, 11575050, 51977057), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019201100, A2020201025), and the Postgraduate Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2020006)
    [1]

    Liao X Y, Li J, Muhammad A I, et al. 2018 Food Control 90 241Google Scholar

    [2]

    Keidar M, Shashurin A, Volotskova O, Stepp M A, Srinivasan P, Sandler A, Trink B 2013 Phys. Plasmas 20 057101Google Scholar

    [3]

    Athanasopoulus D, Svarnas P, Ladas S, Kennou S, Koutsoukos P 2018 Appl. Phys. Lett. 112 213703Google Scholar

    [4]

    Daeschlein G, Woedtke T V, Kindel E, et al. 2010 Plasma Processes Polym. 7 224Google Scholar

    [5]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [6]

    Jung H, Kim W H, Oh I K, et al. 2016 J. Mater. Sci. 51 5082Google Scholar

    [7]

    Ning W J, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [8]

    Li X, Yang D Z, Yuan H, Zhao Z L, Zhou X F, Zhang L, Wang W C 2019 High Volt. 4 228Google Scholar

    [9]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [10]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C 2007 Appl. Phys. Lett. 91 221504Google Scholar

    [11]

    Wang X X, Li C R, Lu M Z, Pu Y K 2003 Plasma Sources Sci. Technol. 12 358Google Scholar

    [12]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203Google Scholar

    [13]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [14]

    Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Sands B L, Ganguly B N, Tachibana K 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [17]

    Zhu W D, Lopez J L 2012 Plasma Sources Sci. Technol. 21 034018Google Scholar

    [18]

    Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 111501Google Scholar

    [19]

    Ghasemi M, Olszewski P, Bradley J W, Walsh J L 2013 J. Phys. D: Appl. Phys. 46 052001Google Scholar

    [20]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [21]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 031501Google Scholar

    [22]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 582Google Scholar

    [23]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [24]

    Liu X, Wang C C, Liu J Y, Wang C S, Yang Z K, Chen F Z, Song J L 2019 J. Appl. Phys. 125 123301Google Scholar

    [25]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [26]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [27]

    Li X C, Lin X T, Wu K Y, Ren C H, Liu R, Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006Google Scholar

    [28]

    Jiang N, Ji A L, Cao Z X 2009 J. Appl. Phys. 106 013308Google Scholar

    [29]

    Kovach Y E, Garcia M C, Foster J E 2019 IEEE Trans. Plasma Sci. 47 3214Google Scholar

    [30]

    李寿哲 2019 低温等离子体光谱理论基础及应用 (第1版) (大连: 大连理工大学出版社) 第185页

    Li S Z 2019 Fundamentals of Low-temperature Plasma Spectroscopy and its Application (1st Ed.) (Dalian: Dalian University of Technology Press) p185 (in Chinese)

    [31]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [32]

    Zhang B, Zhu Y, Liu F, Fang Z 2017 Plasma Sci. Technol. 19 064011Google Scholar

    [33]

    Teodorescu M, Bazavan M, Ionita E R, Dinescu G 2015 Plasma Sources Sci. Technol. 24 025033Google Scholar

    [34]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

    [35]

    Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y, Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015Google Scholar

    [36]

    Xiao D Z, Cheng C, Shen J, Lan Y, Xie H B, Shu X S, Meng Y D, Li J G 2014 Phys. Plasmas 21 053510Google Scholar

    [37]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p550

    [38]

    Shao X J, Chang Z S, Mu H B, Liao W L, Zhang G J 2013 IEEE Trans. Plasma Sci. 41 899Google Scholar

    [39]

    Lowke J J 1992 J. Phys. D: Appl. Phys. 25 202Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  不同交流电压峰值及曝光时间下的等离子体羽照片

    Figure 2.  Images of the plasma plume with different peak voltage and exposure time.

    图 3  外加电压、放电电流和刷形等离子体羽发光信号的波形 (a) 交流电压的幅值为8.0 kV; (b) 交流电压的幅值为10.5 kV

    Figure 3.  Waveforms of applied voltage, discharge current and integrated emission from the brush-shaped plasma plume: (a) The amplitude of alternating current of 8.0 kV; (b) the amplitude of alternating current of 10.5 kV.

    图 4  不同Vp下的ICCD照片 (曝光时间为13.0 μs) (a)−(c) 8.0 kV; (d)−(f) 10.5 kV

    Figure 4.  ICCD images with an exposure time of 13.0 μs for the plume at different Vp: (a)−(c) 8.0 kV; (d)−(f) 10.5 kV.

    图 5  等离子体羽在300−850 nm的总发射光谱 (Vp = 8.0 kV)

    Figure 5.  300−850 nm scanned spectrum emitted from the plasma plume (Vp = 8.0 kV).

    图 6  谱线强度比和分子振动温度沿空间位置(a)、随氧气含量 (b) 和电压峰值 (c) 的变化

    Figure 6.  Intensity ratio of spectral lines and vibration temperature as a function of Y coordinate (a), oxygen concentration (b) and peak voltage (c).

    图 7  844.6 nm与750.4 nm谱线的强度比沿Y轴(a)及随氧气含量(b)和电压峰值(c) 的变化规律

    Figure 7.  Intensity ratio of spectral lines (844.6 nm to 750.4 nm) as a function of Y coordinate (a), oxygen concentration (b) and peak voltage (c).

  • [1]

    Liao X Y, Li J, Muhammad A I, et al. 2018 Food Control 90 241Google Scholar

    [2]

    Keidar M, Shashurin A, Volotskova O, Stepp M A, Srinivasan P, Sandler A, Trink B 2013 Phys. Plasmas 20 057101Google Scholar

    [3]

    Athanasopoulus D, Svarnas P, Ladas S, Kennou S, Koutsoukos P 2018 Appl. Phys. Lett. 112 213703Google Scholar

    [4]

    Daeschlein G, Woedtke T V, Kindel E, et al. 2010 Plasma Processes Polym. 7 224Google Scholar

    [5]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [6]

    Jung H, Kim W H, Oh I K, et al. 2016 J. Mater. Sci. 51 5082Google Scholar

    [7]

    Ning W J, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [8]

    Li X, Yang D Z, Yuan H, Zhao Z L, Zhou X F, Zhang L, Wang W C 2019 High Volt. 4 228Google Scholar

    [9]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [10]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C 2007 Appl. Phys. Lett. 91 221504Google Scholar

    [11]

    Wang X X, Li C R, Lu M Z, Pu Y K 2003 Plasma Sources Sci. Technol. 12 358Google Scholar

    [12]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203Google Scholar

    [13]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [14]

    Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Sands B L, Ganguly B N, Tachibana K 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [17]

    Zhu W D, Lopez J L 2012 Plasma Sources Sci. Technol. 21 034018Google Scholar

    [18]

    Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 111501Google Scholar

    [19]

    Ghasemi M, Olszewski P, Bradley J W, Walsh J L 2013 J. Phys. D: Appl. Phys. 46 052001Google Scholar

    [20]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [21]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 031501Google Scholar

    [22]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 582Google Scholar

    [23]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [24]

    Liu X, Wang C C, Liu J Y, Wang C S, Yang Z K, Chen F Z, Song J L 2019 J. Appl. Phys. 125 123301Google Scholar

    [25]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [26]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [27]

    Li X C, Lin X T, Wu K Y, Ren C H, Liu R, Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006Google Scholar

    [28]

    Jiang N, Ji A L, Cao Z X 2009 J. Appl. Phys. 106 013308Google Scholar

    [29]

    Kovach Y E, Garcia M C, Foster J E 2019 IEEE Trans. Plasma Sci. 47 3214Google Scholar

    [30]

    李寿哲 2019 低温等离子体光谱理论基础及应用 (第1版) (大连: 大连理工大学出版社) 第185页

    Li S Z 2019 Fundamentals of Low-temperature Plasma Spectroscopy and its Application (1st Ed.) (Dalian: Dalian University of Technology Press) p185 (in Chinese)

    [31]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [32]

    Zhang B, Zhu Y, Liu F, Fang Z 2017 Plasma Sci. Technol. 19 064011Google Scholar

    [33]

    Teodorescu M, Bazavan M, Ionita E R, Dinescu G 2015 Plasma Sources Sci. Technol. 24 025033Google Scholar

    [34]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

    [35]

    Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y, Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015Google Scholar

    [36]

    Xiao D Z, Cheng C, Shen J, Lan Y, Xie H B, Shu X S, Meng Y D, Li J G 2014 Phys. Plasmas 21 053510Google Scholar

    [37]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p550

    [38]

    Shao X J, Chang Z S, Mu H B, Liao W L, Zhang G J 2013 IEEE Trans. Plasma Sci. 41 899Google Scholar

    [39]

    Lowke J J 1992 J. Phys. D: Appl. Phys. 25 202Google Scholar

Metrics
  • Abstract views:  9251
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2020
  • Accepted Date:  23 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021
  • /

    返回文章
    返回