Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An overview of mechanism of target detection by odontocetes biosonar

Song Zhong-Chang Zhang Jin-Hu Feng Wen Yang Wu-Yi Zhang Yu

Citation:

An overview of mechanism of target detection by odontocetes biosonar

Song Zhong-Chang, Zhang Jin-Hu, Feng Wen, Yang Wu-Yi, Zhang Yu
PDF
HTML
Get Citation
  • Odontocetes have evolved to own a unique natural sonar system to detect targets. Odontocetes use their sound emission systems in their foreheads to produce echolocation clicking targets. Echoes contain information about the size, material and ranges of the targets. Odontocetes can probe into the echoes in both time domain and frequency domain to realize the target discrimination. More studies are necessary to reveal how odontcoetes collect meaningful information from echoes. In this paper, the target detection by odontocetes is reviewed from three aspects, i.e. detection range, target discrimination and biomimetic target detection system. Odontocetes can actively adjust their biosonar systems to realize optimal detection. Numerical simulation and bioinspired systems can help to shed light on physical mechanism of odontocetes’ target detection process. Multiple theories are needed to deepen our understanding of target detection by odontocetes, which can provide references for designing intelligent biomimetic signal processors.
      Corresponding author: Zhang Yu, yuzhang@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFC1407504, 2018YFC1407505), the National Natural Science Foundation of China (Grant No. 12074323), the Special Fund for Marine and Fishery Development of Xiamen, China (Grant No. 20CZB015HJ01), the Water Conservancy Science and Technology Innovation Project of Guangdong Province, China (Grant No. 2020-16), the China Postdoctoral Science Foundation (Grant No. 2020M682086), and the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021168)
    [1]

    Kinsler L E, Frey A R, Coppens A B, Sanders J V 2000 Fundamentals of Acoustics (New York: Wiley) pp435−470

    [2]

    Urick R J 1983 Principles of Underwater Sound (New York: McGraw- Hill) pp1−16

    [3]

    Au W W L, Simmons J A 2007 Phys. Today 60 40

    [4]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp22−114

    [5]

    Au W W L, Popper A N, Fay R R 2000 Hearing by Whales and Dolphins (New York: Springer-Verlag) pp364−469

    [6]

    Au W W L, Hastings M C 2008 Principles of Marine Bioacoustics (New York: Springer) pp534−538

    [7]

    Au W W L, Hammer Jr C E 1980 Animal Sonar Systems (New York: Plenum Press) pp855−858

    [8]

    Delong C M, Au W W L, Stamper S A 2007 J. Acoust. Soc. Am. 121 605Google Scholar

    [9]

    Pailhas Y, Capus C, Brown K, Moore P 2010 J. Acoust. Soc. Am. 127 3809Google Scholar

    [10]

    Delong C M, Au W W L, Lemonds D W, Harley H E, Roitblat H L 2006 J. Acoust. Soc. Am. 119 1867Google Scholar

    [11]

    Muller M W, Allen III J S, Au W W L, Nachtigall P E 2008 J. Acoust. Soc. Am. 124 657Google Scholar

    [12]

    Gaunaurd G C, Brill D, Huang H, Moore P W B, Strifors H C 1998 J. Acoust. Soc. Am. 103 1547Google Scholar

    [13]

    Au W W L, Pawloski D A 1992 J. Comp. Physiol. A 170 41

    [14]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [15]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [16]

    Cranford T W, Krysl P 2015 PLoS One 10 e0116222Google Scholar

    [17]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol. 228 223Google Scholar

    [18]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [19]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [20]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [21]

    Cranford T W, Mckenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hilderbrand H A 2008 Anat. Rec. 291 353Google Scholar

    [22]

    Nachtigall P E 1980 Animal Sonar Systems (New York: Plenum Press) pp71−95

    [23]

    Dubrovskiy N A, Krasnov O S 1971 Tr. Akust. Inst. 17 9

    [24]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [25]

    Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall P E 2012 Proc. R. Soc. London, Ser. B 279 2237

    [26]

    Koblitz J C, Wahlberg M, Stilz P, Madsen P T, Beedholm K, Schnitzler H U 2012 J. Acoust. Soc. Am. 131 2315Google Scholar

    [27]

    Morozov V P, Akopian A I, Burdin V I, Zaitseva K A, Sokovykh Y A 1972 Biofizika 17 139

    [28]

    Au W W L 2004 J. Acoust. Soc. Am. 115 2614

    [29]

    Hammer Jr C E, Au W W L 1980 J. Acoust. Soc. Am. 68 1285Google Scholar

    [30]

    Ibsen S D, Au W W L, Nachtigall P E, DeLong C M, Breese M 2007 J. Acoust. Soc. Am. 122 2446Google Scholar

    [31]

    Au W W L, Pawloski D A 1989 J. Comp. Physiol. A 164 451Google Scholar

    [32]

    Au W W L, Turl C W 1991 J. Acoust. Soc. Am. 89 2448Google Scholar

    [33]

    Au W W L, Martin D W 1988 Animal Sonar: Processes and Performance (New York: Plenum Press) pp809−813

    [34]

    Wisniewska D M, Johnson M, Beedholm K, Wahlberg M, Madsen P T 2012 J. Exp. Biol 215 4358Google Scholar

    [35]

    Finneran J J, Houser D S, Moore P W, Branstetter B K, Trickey J S, Ridgway S H 2010 J. Acoust. Soc. Am. 128 1483Google Scholar

    [36]

    Kellogg W N 1959 J. Comp. Physiol. Psychol. 52 509Google Scholar

    [37]

    Evans W E, Powell B A 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp363−383

    [38]

    Norris K S, Evans W E, Turner R N 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp409−437

    [39]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [40]

    Au W W L 2014 J. Acoust. Soc. Am. 136 9Google Scholar

    [41]

    Belkovich V M, Dubrovskiy N A 1976 Sensory Bases of Cetacean Orientation (Leningrad: Nauka) pp137−148

    [42]

    Diercks K J, Goldsberry T G and Horton C W 1963 J. Acoust. Soc. Am. 35 59Google Scholar

    [43]

    Bel’kovich V M, Borisov V I 1971 Tru. Akust. Inst. 17 19

    [44]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559Google Scholar

    [45]

    Leighton T G, Chua G H, White P 2013 Proceedings of Meetings on Acoustics ICA 2013 Montreal, Canada, June 2, 2013 p19

    [46]

    Au W W L, Branstetter B K, Benoit-Bird K J, Kastelein R A 2009 J. Acoust. Soc. Am. 126 460Google Scholar

    [47]

    Dubrovskiy N A, Krasnov P S, Titov A A 1971 Proceedings of the 7th International Congress on Acoustics Budapest, Hungary, August 24, 1971 p533

    [48]

    Thompson R K R, Herman L M 1975 J. Acoust. Soc. Am. 57 943Google Scholar

    [49]

    Au W W L, Pawloski J L 1989 J. Acoust. Soc. Am. 86 591Google Scholar

    [50]

    Dubrovskiy N A 1990 Sensory Abilities of Cetaceans (New York: Plenum Press) pp233−254

    [51]

    Muller M W, Au W W L, Nachtigall P E, Allen III J S, Breese M 2007 J. Acoust. Soc. Am. 122 2255Google Scholar

    [52]

    Au W W L, Ou H 2014 J. Acoust. Soc. Am. 136 EL67Google Scholar

    [53]

    Zaslavskiy G L, Titov A A, Lekomtsev V M 1969 Tru. Akust. Inst. 8 134

    [54]

    Babkin V P, Dubrovskiy N A 1971 Tru. Akust. Inst. 17 29

    [55]

    Dubrovskiy N A, Titov A A 1975 Akusticheskij Zhurnal 21 469

    [56]

    Murchison A E 1980 Animal Sonar Systems (New York: Plenum Press) pp43−70

    [57]

    Murchison A E 1976 J. Acoust. Soc. Am. 60 S5

    [58]

    Au W W L, Snyder K J 1980 J. Acoust. Soc. Am. 68 1077Google Scholar

    [59]

    Au W W L, Carder D A, Penner R H, Scronce B L 1985 J. Acoust. Soc. Am. 77 726Google Scholar

    [60]

    Au W W L, Moore P W B 1984 J. Acoust. Soc. Am. 75 255Google Scholar

    [61]

    Au W W L, Benoit-Bird K J, Kastelein R 2006 J. Acoust. Soc. Am. 119 3316

    [62]

    Brill R L, Pawloski J L, Helweg D A, Au W W L, Moore P W B 1992 J. Acoust. Soc. Am. 92 1324Google Scholar

    [63]

    Au W W L 1988 Animal Sonar (New York: Plenum Press) pp753−768

    [64]

    Moore P W B, Pawloski D A 1993 J. Acoust. Soc. Am. 94 1829

    [65]

    Au W W L, Andersen L N, Rasmussen A R, Roitblat H L, Nachtigall P E 1995 J. Acoust. Soc. Am. 98 43Google Scholar

    [66]

    Qiao G, Qing X, Feng W, Liu S Z, Nie D H, Zhang Y 2017 J. Acoust. Soc. Am. 142 3787Google Scholar

    [67]

    Feng W, Zhang Y, Wei C 2019 J. Acoust. Soc. Am. 146 1362Google Scholar

    [68]

    Doolittle R D, Überall H 1966 J. Acoust. Soc. Am. 39 272Google Scholar

    [69]

    Gaunaurd, G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [70]

    Feng W, Zhang Y, Wei C 2018 J. Acoust. Soc. Am. 144 1018Google Scholar

    [71]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [72]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J. Acoust. Soc. Am. 106 3699Google Scholar

    [73]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

    [74]

    Torrent D, Sánchez-Dehesa J 2006 Phys. Rev. B 74 224305Google Scholar

    [75]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323Google Scholar

    [76]

    Torrent D, Håkansson A, Cervera F Sánchez-Dehesa J 2006 Phys. Rev. Lett. 96 204302Google Scholar

  • 图 1  宽吻海豚目标探测准确率随距离的变化趋势[58]

    Figure 1.  Dolphin’s performance as a function of range[58]. Reprinted with permission (RightsLink:https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=a66368f0-df92-40d7-b308-5da5b8b92324).

    图 2  鼠海豚的声波束随目标探测距离的变化趋势[24]

    Figure 2.  Approximate detection volume for a harbour porpoise tracking fish in a quiet environment and relative change in the size of ensonified area ahead of the porpoise as it approaches a target[24]. Reprinted with permission (RightsLink: https://elifesciences.org/terms).

    图 3  宽带仿生声呐脉冲信号及圆柱壳回波 (a) 仿生脉冲作用于圆柱壳示意图; (b) 仿生脉冲时域特性; (c)目标回波时频特性; (d) 目标回波的镜反射与弹性成分[66]

    Figure 3.  A biomimetic broadband pulse and echoes from the cylindrical shell: (a) Geometric illustration for a pulse incident upon a shell; (b) waveform of the biomimetic pulse; (c) modified time-frequency of the synthetic echo of targets; (d) extracted elastic echo and the original synthetic echo[66].

    图 4  人类与宽吻海豚的目标识别率随厚度的变化趋势对比[8]

    Figure 4.  Comparison of performance in identifying the comparison and standard targets between human and dolphin as a function of the wall thickness[8]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=b173fda8-9b88-4bde-943f-ddbed16528ba).

    图 5  目标回波特征 (a) 时域特征; (b) 频域特征[10]; Duration (Dur), Highlight, TS, Peak frequency, Center frequency, rmsBW分别表示时长、局部峰值、目标强度、峰值频率、中心频率与均方根带宽

    Figure 5.  Echo features. (a) Features in time domain, including duration (line above echo) and number of highlights (marked with asterisks). Target strength is also shown on the bottom of the graph. (b) Features in frequency domain, including peak frequency, center frequency, and rms bandwidth[10]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=34445ac7-c515-4487-bb56-0be555fd3cfc).

    图 6  仿生超声脉冲及与目标回波特性 (a) 仿生超声脉冲信号时域特性; (b) 仿生超声脉冲信号频谱特性; (c) PVC管回波时频特性; (d) 钢管回波时频特性[9]

    Figure 6.  Biomimetic pulse acts on tubular targets and the echoes: (a) Display of the biomimetic pulse in time domain; (b) power spectrum of the pulse; spectrograms of PVC tube (c) and steel pipe (d) target for the biomimetic pulse[9]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=9f39d17e-b79f-4173-a2fd-bc04cca52724 ).

    图 7  鳕鱼(Cod)、鲻鱼(Mullet)、明太鱼(Pollack)和鲈鱼(Sea bass)回波的时频特征[46]

    Figure 7.  Time-frequency representation of the echoes using the dolphin-like biosonar signal[46]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=f7614cb8-8672-41a7-9f83-6f729a0ec2ff).

    图 8  钢球壳回波的时频信息以及滤除镜面反射波后的时频特性[66] (a) 1 mm厚度球壳回波时频特性; (b) 10 mm厚度球壳回波时频特性; (c) 15 mm厚度球壳回波时频特性; (d) 1 mm球壳滤除镜面反射波时频特性; (e) 10 mm球壳滤除镜面反射波时频特性; (f) 15 mm球壳滤除镜面反射波时频特性

    Figure 8.  The Wigner-Ville distribution of the backscattering echoes of the target with (a) 1 mm, (b) 10 mm, and (c) 15 mm thickness. The corresponding modified distributions of the elastic echoes of the target with (d) 1 mm, (e) 10 mm, and (f) 15 mm thickness[66].

    图 9  江豚目标探测模型构建过程图解及激励波形和功率谱图[67]

    Figure 9.  A systematic diagram of a biosonar model of an echolocating finless porpoise, where waveform and power spectrum of the excitation click are also presented. The finite element model was constructed based on the CT scan data[67].

    图 10  钢柱与亚克力柱回波的时域与频域特征[67]

    Figure 10.  Simulated waveforms and frequency spectra of the echoes from steel and acrylic cylinders using finless porpoise’s model[67].

    图 11  江豚声发射系统人工模型及实验测量 (a) 声发射人工模型目标探测示意图; (b) 目标探测实验系统; (c) 无人工模型目标探测时域波形结果; (d) 人工模型目标探测时域波形结果[71]

    Figure 11.  Bioinspired device and its experiment setup: (a) Schematic showing the experimental setup of the biosonar device (PPM); (b) photograph of the underwater target detection setup; (c) measured pressures of the system without PPM at θ = 20° (lower) and 65° (upper), where Object 1 and its jamming Object 2 were used for underwater detection; (d) pressures of the system with PPM at θ = 20° (lower) and 65° (upper)[71].

  • [1]

    Kinsler L E, Frey A R, Coppens A B, Sanders J V 2000 Fundamentals of Acoustics (New York: Wiley) pp435−470

    [2]

    Urick R J 1983 Principles of Underwater Sound (New York: McGraw- Hill) pp1−16

    [3]

    Au W W L, Simmons J A 2007 Phys. Today 60 40

    [4]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp22−114

    [5]

    Au W W L, Popper A N, Fay R R 2000 Hearing by Whales and Dolphins (New York: Springer-Verlag) pp364−469

    [6]

    Au W W L, Hastings M C 2008 Principles of Marine Bioacoustics (New York: Springer) pp534−538

    [7]

    Au W W L, Hammer Jr C E 1980 Animal Sonar Systems (New York: Plenum Press) pp855−858

    [8]

    Delong C M, Au W W L, Stamper S A 2007 J. Acoust. Soc. Am. 121 605Google Scholar

    [9]

    Pailhas Y, Capus C, Brown K, Moore P 2010 J. Acoust. Soc. Am. 127 3809Google Scholar

    [10]

    Delong C M, Au W W L, Lemonds D W, Harley H E, Roitblat H L 2006 J. Acoust. Soc. Am. 119 1867Google Scholar

    [11]

    Muller M W, Allen III J S, Au W W L, Nachtigall P E 2008 J. Acoust. Soc. Am. 124 657Google Scholar

    [12]

    Gaunaurd G C, Brill D, Huang H, Moore P W B, Strifors H C 1998 J. Acoust. Soc. Am. 103 1547Google Scholar

    [13]

    Au W W L, Pawloski D A 1992 J. Comp. Physiol. A 170 41

    [14]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [15]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [16]

    Cranford T W, Krysl P 2015 PLoS One 10 e0116222Google Scholar

    [17]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol. 228 223Google Scholar

    [18]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [19]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [20]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [21]

    Cranford T W, Mckenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hilderbrand H A 2008 Anat. Rec. 291 353Google Scholar

    [22]

    Nachtigall P E 1980 Animal Sonar Systems (New York: Plenum Press) pp71−95

    [23]

    Dubrovskiy N A, Krasnov O S 1971 Tr. Akust. Inst. 17 9

    [24]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [25]

    Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall P E 2012 Proc. R. Soc. London, Ser. B 279 2237

    [26]

    Koblitz J C, Wahlberg M, Stilz P, Madsen P T, Beedholm K, Schnitzler H U 2012 J. Acoust. Soc. Am. 131 2315Google Scholar

    [27]

    Morozov V P, Akopian A I, Burdin V I, Zaitseva K A, Sokovykh Y A 1972 Biofizika 17 139

    [28]

    Au W W L 2004 J. Acoust. Soc. Am. 115 2614

    [29]

    Hammer Jr C E, Au W W L 1980 J. Acoust. Soc. Am. 68 1285Google Scholar

    [30]

    Ibsen S D, Au W W L, Nachtigall P E, DeLong C M, Breese M 2007 J. Acoust. Soc. Am. 122 2446Google Scholar

    [31]

    Au W W L, Pawloski D A 1989 J. Comp. Physiol. A 164 451Google Scholar

    [32]

    Au W W L, Turl C W 1991 J. Acoust. Soc. Am. 89 2448Google Scholar

    [33]

    Au W W L, Martin D W 1988 Animal Sonar: Processes and Performance (New York: Plenum Press) pp809−813

    [34]

    Wisniewska D M, Johnson M, Beedholm K, Wahlberg M, Madsen P T 2012 J. Exp. Biol 215 4358Google Scholar

    [35]

    Finneran J J, Houser D S, Moore P W, Branstetter B K, Trickey J S, Ridgway S H 2010 J. Acoust. Soc. Am. 128 1483Google Scholar

    [36]

    Kellogg W N 1959 J. Comp. Physiol. Psychol. 52 509Google Scholar

    [37]

    Evans W E, Powell B A 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp363−383

    [38]

    Norris K S, Evans W E, Turner R N 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp409−437

    [39]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [40]

    Au W W L 2014 J. Acoust. Soc. Am. 136 9Google Scholar

    [41]

    Belkovich V M, Dubrovskiy N A 1976 Sensory Bases of Cetacean Orientation (Leningrad: Nauka) pp137−148

    [42]

    Diercks K J, Goldsberry T G and Horton C W 1963 J. Acoust. Soc. Am. 35 59Google Scholar

    [43]

    Bel’kovich V M, Borisov V I 1971 Tru. Akust. Inst. 17 19

    [44]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559Google Scholar

    [45]

    Leighton T G, Chua G H, White P 2013 Proceedings of Meetings on Acoustics ICA 2013 Montreal, Canada, June 2, 2013 p19

    [46]

    Au W W L, Branstetter B K, Benoit-Bird K J, Kastelein R A 2009 J. Acoust. Soc. Am. 126 460Google Scholar

    [47]

    Dubrovskiy N A, Krasnov P S, Titov A A 1971 Proceedings of the 7th International Congress on Acoustics Budapest, Hungary, August 24, 1971 p533

    [48]

    Thompson R K R, Herman L M 1975 J. Acoust. Soc. Am. 57 943Google Scholar

    [49]

    Au W W L, Pawloski J L 1989 J. Acoust. Soc. Am. 86 591Google Scholar

    [50]

    Dubrovskiy N A 1990 Sensory Abilities of Cetaceans (New York: Plenum Press) pp233−254

    [51]

    Muller M W, Au W W L, Nachtigall P E, Allen III J S, Breese M 2007 J. Acoust. Soc. Am. 122 2255Google Scholar

    [52]

    Au W W L, Ou H 2014 J. Acoust. Soc. Am. 136 EL67Google Scholar

    [53]

    Zaslavskiy G L, Titov A A, Lekomtsev V M 1969 Tru. Akust. Inst. 8 134

    [54]

    Babkin V P, Dubrovskiy N A 1971 Tru. Akust. Inst. 17 29

    [55]

    Dubrovskiy N A, Titov A A 1975 Akusticheskij Zhurnal 21 469

    [56]

    Murchison A E 1980 Animal Sonar Systems (New York: Plenum Press) pp43−70

    [57]

    Murchison A E 1976 J. Acoust. Soc. Am. 60 S5

    [58]

    Au W W L, Snyder K J 1980 J. Acoust. Soc. Am. 68 1077Google Scholar

    [59]

    Au W W L, Carder D A, Penner R H, Scronce B L 1985 J. Acoust. Soc. Am. 77 726Google Scholar

    [60]

    Au W W L, Moore P W B 1984 J. Acoust. Soc. Am. 75 255Google Scholar

    [61]

    Au W W L, Benoit-Bird K J, Kastelein R 2006 J. Acoust. Soc. Am. 119 3316

    [62]

    Brill R L, Pawloski J L, Helweg D A, Au W W L, Moore P W B 1992 J. Acoust. Soc. Am. 92 1324Google Scholar

    [63]

    Au W W L 1988 Animal Sonar (New York: Plenum Press) pp753−768

    [64]

    Moore P W B, Pawloski D A 1993 J. Acoust. Soc. Am. 94 1829

    [65]

    Au W W L, Andersen L N, Rasmussen A R, Roitblat H L, Nachtigall P E 1995 J. Acoust. Soc. Am. 98 43Google Scholar

    [66]

    Qiao G, Qing X, Feng W, Liu S Z, Nie D H, Zhang Y 2017 J. Acoust. Soc. Am. 142 3787Google Scholar

    [67]

    Feng W, Zhang Y, Wei C 2019 J. Acoust. Soc. Am. 146 1362Google Scholar

    [68]

    Doolittle R D, Überall H 1966 J. Acoust. Soc. Am. 39 272Google Scholar

    [69]

    Gaunaurd, G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [70]

    Feng W, Zhang Y, Wei C 2018 J. Acoust. Soc. Am. 144 1018Google Scholar

    [71]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [72]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J. Acoust. Soc. Am. 106 3699Google Scholar

    [73]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

    [74]

    Torrent D, Sánchez-Dehesa J 2006 Phys. Rev. B 74 224305Google Scholar

    [75]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323Google Scholar

    [76]

    Torrent D, Håkansson A, Cervera F Sánchez-Dehesa J 2006 Phys. Rev. Lett. 96 204302Google Scholar

  • [1] Zheng Hao-Zhe, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping. Application and development of liquid argon detector in rare event detection. Acta Physica Sinica, 2023, 72(5): 052901. doi: 10.7498/aps.72.20222055
    [2] He Zhao-Yang, Lei Bo, Yang Yi-Xin. Acoustic field fluctuation caused by source-generated internal waves and its detection method. Acta Physica Sinica, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [3] Hou A-Hui, Hu Yi-Hua, Fang Jia-Jie, Zhao Nan-Xiang, Xu Shi-Long. Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging. Acta Physica Sinica, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [4] Song Zhong-Chang, Zhang Yu, Wei Chong, Yang Wu-Yi, Xu Xiao-Hui. Biosonar emission characteristics and beam control of odontocetes. Acta Physica Sinica, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [5] Zha Bing-Ting, Yuan Hai-Lu, Ma Shao-Jie, Chen Guang-Song. Influence of single-beam expanding scanning laser circumferential detection system parameters on detection capability. Acta Physica Sinica, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [6] Wei Yi, Liu Fei, Yang Kui, Han Ping-Li, Wang Xin-Hua, Shao Xiao-Peng. Passive underwater polarization imaging detection method in neritic area. Acta Physica Sinica, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [7] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [8] Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai. Pump-orientation-probe technique and its applications. Acta Physica Sinica, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [9] Kou Tian, Yu Lei, Zhou Zhong-Liang, Wang Hai-Yan, Ruan Cheng-Wei, Liu Hong-Qiang. Spectral radiant characteristic of airborne optoelectronic system detecting aerial maneuver target. Acta Physica Sinica, 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [10] Feng Ming-Chun, Xu Liang, Liu Wen-Qing, Liu Jian-Guo, Gao Min-Guang, Wei Xiu-Li. Investigation of detecting biological aerosol by passive Fourier transform infrared spectroscopy technology based on MODTRAN model. Acta Physica Sinica, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [11] Xu Xiao-Bin, Zhang He, Zhang Xiang-Jin, Chen Shan-Shan, Zhang Wei. Effect of plane target characteristics on ranging distribution for pulse laser detection. Acta Physica Sinica, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [12] Xu Shi-Long, Hu Yi-Hua, Zhao Nan-Xiang, Wang Yang-Yang, Li Le, Guo Li-Ren. Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Physica Sinica, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [13] Lian Tian-Hong, Wang Shi-Yu, Cai De-Fang, Li Bing-Bin, Guo Zhen. Coherent emitting of multiple sub-beams for small target detection. Acta Physica Sinica, 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [14] Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying. Acoustic probing of the granular solid system under direct shear. Acta Physica Sinica, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [15] Sun Yao, Zhang Chun-Min, Du Juan, Zhao Bao-Chang. A new method of polarization measurement based on the novel polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [16] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [17] LI GENG-YING, PAN TAO, XIA XIAO-JIAN. REMOTE MEASUREMENT OF PIEZOEFFECT. Acta Physica Sinica, 1997, 46(2): 400-405. doi: 10.7498/aps.46.400
    [18] XU FENG, LIU LIAO. PARTICLE DETECTOR MODEL FOR INSTANT RESPONSE. Acta Physica Sinica, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [19] CHEN JI-SHU. THEORY OF THIN PYROELECTRIC FILM DETECTORS. Acta Physica Sinica, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] STAR-DETECTOR FOR π--MESONS А.Ф.Дунайцев,Ю.Д. Прокошкин. Acta Physica Sinica, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
Metrics
  • Abstract views:  8012
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2021
  • Accepted Date:  07 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回