-
With the rapid development of the information age, the demand for information storage capacity and miniaturization of memory units has been being increased. However, the commonly used silicon-based flash memory has nearly approached to its physical limit. The resistive switching random access memory (ReRAM) has become one of the promising candidates for the next-generation non-volatile memory due to its simple structure, fast operation speed, excellent flexibility, and long endurance. Recently, we witnessed that the lead halide perovskites, as hot star materials, have been widely used in optoelectronic fields owning to their advantages of low cost, excellent photoelectric properties, and solution process ability. Moreover, the lead halide perovskite has been successfully used as the active layer in ReRAM device because of its tunable bandgap, long charge carrier diffusion length, fast ion migration, and high charge carrier mobility. Whereas the toxicity of lead in halide perovskite is a very horrible problem in lead halide perovskite-based ReRAM devices. The lead-free halide perovskite is considered to be the most promising material for perovskite-based ReRAM devices because it does not contain lead element. Most recently, a large number of scientists from different groups have begun to study lead-free perovskite-based ReRAM devices. For example, tin, bismuth, antimony, and copper-based halide perovskite materials have been utilized in ReRAM devices and exhibited excellent resistance switching (RS) performances. Here in this paper, the recent development of lead-free perovskite and its RS performance are reviewed, including lead-free halide perovskite materials, RS performances, and RS mechanisms of lead-free perovskite-based ReRAM. Finally, the key problems and development prospects of lead-free perovskite-based ReRAM are also presented, which provides a fundamental step towards developing the RS performance based on lead-free halide perovskites.
-
Keywords:
- lead-free halide perovskite /
- resistive switching random access memory /
- resistance switching performance /
- mechanism of resistance switching
[1] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar
[2] Choi S, Shin J H, Lee J, Sheridan P, Lu W. D 2017 Nano Lett. 17 3113Google Scholar
[3] Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar
[4] Mao D, Mejia I, Salas-Villasenor A L, Singh M, Stiegler H, Gnade B E, Quevedo-Lopez M A 2013 Org. Electron. 14 505Google Scholar
[5] Jinnai B, Zhang C, Kurenkov A, Bersweiler M, Sato H, Fukami S, Ohno H 2017 Appl. Phys. Lett. 111 102402Google Scholar
[6] Zhou J, Ji H K, Lan T, Yan J W, Zhou W L, Miao X S. 2016 J. Electron. Mater. 44 235Google Scholar
[7] Chen Y Q, Liu X, Liu Y, Peng C, Fang W X, En Y F, Huang Y 2017 Appl. Phys. Lett. 111 232104Google Scholar
[8] Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mat. Sci. Eng. R. 83 1Google Scholar
[9] Lanza M, Wong H S P, Pop E, et al. 2019 Adv. Electron. Mater. 5 1800143Google Scholar
[10] Jang J, Choi H H, Paik S H, Kim J K, Chung S, Park J H 2018 Adv. Electron. Mater. 4 1800355Google Scholar
[11] Duan W, Rao C, Wang X, Pei Y Mater. 2018 Res. Express 6 016413Google Scholar
[12] Lee M J, Lee C B, Lee D, et al. 2011 Nat. Mater. 10 625Google Scholar
[13] Yang J J, Pickett M D, Li X, Ohlber g D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429Google Scholar
[14] Ng W H, Mehonic A, Buckwell M, Montesi L, Kenyon A J 2018 IEEE Trans. Nanotechnol. 17 884Google Scholar
[15] Song Y, Jang J, Yoo D, Jung S H, Hong S, Lee J K, Lee T 2015 Org. Electron. 17 192Google Scholar
[16] Busby Y, Crespo-Monteiro N, Girleanu M, Brinkmann M, Ersen O, Pireaux J J 2015 Org. Electron. 16 40Google Scholar
[17] You Y, Yang K, Yuan S, Dong S, Zhang H, Huang Q, Gillin W P, Zhan Y, Zheng L 2014 Org. Electron. 15 1983Google Scholar
[18] Suga T, Sakata M, Aoki K, Nishide H 2014 ACS Macro Lett. 3 703Google Scholar
[19] Lee H S, Kang K M, Han W J, Lee T W, Park C S, Choi Y J, Park H H 2014 Appl. Mech. Mater. 597 184Google Scholar
[20] Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar
[21] Li S, Zeng H Z, Zhang S Y, Wei X H 2013 Appl. Phys. Lett. 102 153506Google Scholar
[22] Cui Y, Peng H, Wu S, Wang R, Wu T 2013 ACS Appl. Mater. Inter. 5 1213Google Scholar
[23] Ielmini D 2016 Semicond. Sci. Technol. 6 063002Google Scholar
[24] Liu X, Ji Z, Liu M, Shang L, Li D, Dai Y 2011 Chin. Sci. Bull. 56 3178Google Scholar
[25] Panda D, Tseng T Y 2014 Ferroelectrics 471 23Google Scholar
[26] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar
[27] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[28] Eames C, Frost J M, Barnes P R, O'Regan B C 2015 Nat. Commun. 6 7497Google Scholar
[29] Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F 2015 Nat. Commun. 6 7124Google Scholar
[30] Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S 2015 Science 347 519Google Scholar
[31] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[32] Chin X Y, Perumal A, Bruno A, et al. 2018 Energ. Environ. Sci. 11 1770Google Scholar
[33] Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar
[34] Choi E S, Yang J M, Kim S G, Cuhadar C, Kim S Y, Kim S H, Lee D, Park N G 2019 Nanoscale 11 14455Google Scholar
[35] Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H, Kim H J 2017 Adv. Mater. Interfaces 4 1601035Google Scholar
[36] Kim S G, Van Le Q, Han J S, et al. 2019 Adv. Funct. Mater. 29 1906686Google Scholar
[37] Kim S Y, Yang J M, Choi E S, Park N G 2019 Nanoscale 11 14330Google Scholar
[38] Zhu Y Y, Cheng P W, Shi J, Wang H J, Liu Y, Xiong R, Ma H Y, Ma HX 2019 Adv. Electron. Mater. 2 1900754Google Scholar
[39] Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar
[40] Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv. Mater. 30 1704002Google Scholar
[41] Kim H, Han J S, Kim G, Kim S Y, Jang H W 2019 J. Mater. Chem. C 7 5226Google Scholar
[42] Xiao X Y, Hu J, Tang S, Yan K, Gao B, Chen H L, Zou C 2020 Adv. Mater. Technol. 5 1900914Google Scholar
[43] Jeong D N, Yang J M, Park N G 2020 Nanotechnology 31 152001Google Scholar
[44] Li B X, Hui W, Ran X Q, Xia D, Xia F, Chao L F, Chen Y H, Huang W 2019 J. Mater. Chem. C 7 7476Google Scholar
[45] Mohd Yusoff A R B, Gao P, Nazeeruddin M K 2018 Coord. Chem. Rev. 373 258Google Scholar
[46] Schroeder H, Balassa J J 1961 J. Chronic Dis. 14 408Google Scholar
[47] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar
[48] Wang H J, Lin J Q, Zhu Y Y, Zeng X, Wei H, Cheng P W, Lu H B, Liu Y, Xiong R 2020 Adv. Electron. Mater. 11 202000799Google Scholar
[49] Han J S, Le Q V, Choi J, Kim H, Kim S G, Hong K, Moon C W, Kim T L, Kim S Y, Jang H W 2019 ACS Appl. Mater. Inter. 11 8155Google Scholar
[50] Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G 2015 J. Mater. Chem. A 3 23829Google Scholar
[51] Li M Q, Hu Y Q, Bi L Y, Zhang H L, Wang Y, Zheng Y Z 2017 Chem. Mater. 29 5463Google Scholar
[52] Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Lee D 2018 ACS Appl. Mater. Inter. 10 29741Google Scholar
[53] Liang G X, Chen X Y, Z H Chen, Lan H B, Zheng Z H, Fan P, Tian X Q, Duan J Y, Wei Y D, Su Z H 2019 J. Phys. Chem. C 123 27423Google Scholar
[54] Xiong Z, Hu W, She Y, Lin Q Q, Hu L J, Tang X S, Sun K 2019 ACS Appl. Mater. Inter. 11 30037Google Scholar
[55] Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar
[56] Sundar S, Chakravarty J 2010 Int. J. Environ. Res. Public Health 7 4267Google Scholar
[57] Ahmad K, Mobin S M 2020 ACS Omega 44 28404Google Scholar
[58] Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar
[59] Lewis J S, Laforest R, Buettner T L, et al. 2001 P. Natl. Acad. Sci. USA 3 1206Google Scholar
[60] Cui X P, Jiang K J, Huang J H, Zhang Q Q, Su M J, Yang L M, Song Y L, Zhou X Q 2015 Synthetic Met. 209 247Google Scholar
[61] Cortecchia D, Dewi H A, Yin J, et al. 2016 Inorg. Chem. 55 1044Google Scholar
[62] Yang P, Liu G, Liu B, Liu X, Lou Y, Chen J, Zhao Y 2018 Chem. Commun. 54 11638Google Scholar
[63] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar
[64] Zeng F J, Guo Y Y, Hu W, et al. 2020 J. Lumin. 223 117178Google Scholar
[65] Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Inter. 12 23094Google Scholar
[66] Hu Y Q, Zhang S F, Miao X L, Su L S, Bai F, Qiu T, Liu J Z, Yuan G L 2017 Adv. Mater. Interfaces 4 1700131Google Scholar
[67] Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114Google Scholar
[68] Nili H, Walia S, Kandjani A E, et al. 2015 Adv. Funct. Mater. 25 3172Google Scholar
-
图 2 CsSnBr3非铅钙钛矿材料阻变性能 (a) Pt/CsSnBr3/Pt/PET阻变存储器结构示意图; (b)电流-电压(I-V )特性曲线; (c)耐受性[48]
Figure 2. Resistive switching performance of CsSnBr3 lead-free halide perovskite: (a) Schematic of Pt/CsSnBr3/Pt/PET resistive switching device; (b) typical current-voltage (I-V ) curve; (c) endurance performance[48].
图 3 CsSnI3非铅钙钛矿材料及其阻变性能 (a) CsSnI3晶体结构; (b)阻变存储器结构; (c)器件的截面SEM图; Ag/CsSnI3/Pt/Ti/SiO2/Si器件的(d) I-V特性曲线、(e)耐受性和(f)高低阻态保持特性; Au/CsSnI3/Pt/Ti/SiO2/Si器件的(g) I-V特性曲线、(h)耐受性和(i) 50个不同元器件高低阻态[49]
Figure 3. Resistive switching performance of CsSnI3 lead-free perovskite: (a) CsSnI3 crystal structure; (b) schematic of the Ag or Au/PMMA/CsSnI3/Pt/SiO2/Si vertical stack structure; (c) cross-sectional SEM image of the device; (d) the typical I-V curves, (e) endurance performance, and (f) retention characteristics of low resistances state (LRS) and high resistance state (HRS) of the Ag/PMMA/CsSnI3/Pt devices; (g) the typical I-V curves, (h) endurance performance, and (i) HRS and LRS of 50 different cells of the Au/PMMA/CsSnI3/Pt devices[49].
图 6 铋基非铅卤素钙钛矿阻变存储器 (a) Au/A3Bi2I9/Pt/Ti/SiO2/Si器件结构示意图; (b) Rb3Bi2I9阻变存储器截面SEM图; (c) Cs3Bi2I9阻变存储器截面SEM图; Rb3Bi2I9阻变存储器的(d) I-V特性曲线、(e)耐受性和(f)保持特性; Cs3Bi2I9阻变存储器的(g) I-V特性曲线、(h)耐受性和(i)保持特性[52]
Figure 6. The Bi-based perovskite resistance random access memory (ReRAM) devices: (a) Schematic of Au/A3Bi2I9/Pt/Ti/SiO2/Si based ReRAM devices; (b) the cross-section SEM image of Rb3Bi2I9 based ReRAM device; (c) the cross-section SEM image of Cs3Bi2I9 based ReRAM device; (d) the typical I-V curve, (e) endurance, and (f) retention of Rb3Bi2I9 based ReRAM; (g) the typical I-V curve, (h) endurance, and (i) retention of Cs3Bi2I9 based ReRAM[52].
图 9 Au/Cs2AgBi2Br6/ITO 器件在不同恶劣环境下的I-V特性曲线 (a)相对湿度(RH) 10%—80%; (b)温度范围为303—453 K; (c)酒精灯外焰加热10 s; (d)在60Co射线照射下曝露, 总剂量高达5 × 105 rad(SI)[55]
Figure 9. I-V characteristics of Au/Cs2AgBi2Br6/ITO device in different harsh environments: (a) 10%—80% relative humidity; (b) temperature range from 303 to 453 K; (c) burnt by luminous cone of alcohol lamp for 10 s; (d) exposed under 60Co γ-ray irradiation with a total dose as high as 5 × 105 rad (SI)[55].
图 10 (a) Ag/PMMA/MA3Sb2Br9/ITO阻变存储器结构示意图; (b) MA3Sb2Br9晶体结构; (c) MA3Sb2Br9薄膜截面SEM图; MA3Sb2Br9基阻变存储器的(d) I-V特性曲线、(e)耐久性和(f)保持时间; (g)依赖于连续脉冲的长期增强(LTP)和长期抑制(LTD)现象; (h)突触前和突触后突峰(用于模拟突峰时间依赖性可塑性(STDP)); (i) STDP行为[58]
Figure 10. (a) Schematic device structure of Ag/PMMA/MA3Sb2Br9/ITO ReRAM; (b) crystal structure of MA3Sb2Br9; (c) cross-sectional SEM image; (d) I-V characteristics, (e) endurance, and (f) retention time of MA3Sb2Br9 based memristors; (g) long-term potentiation (LTP) and long-term depression (LTD) depending on consecutive pulses; (h) presynaptic and postsynaptic spikes for emulating spike timing dependent plasticity (STDP); (i) STDP behavior of an MA3Sb2Br9 memristor[58].
图 11 (a) Cs3Cu2I5非铅钙钛矿晶体结构; Cs3Cu2I5阻变存储器的(b)垂直结构示意图和(c)循环测试; (d)模拟神经突触示意图; (e)线性增强和线性抑制; (f)美国国家标准技术研究院数据库(MNIST)训练数据识别精度[65]
Figure 11. (a) Cs3Cu2I5 crystal structure; (b) vertical stack structure schematic and (c) cycle tests of the Ag/PMMA/Cs3Cu2I5/ITO memristor; (d) schematic of synapses; (e) linear potentiation and depression; (f) successful recognition accuracy monitored while training the data set from Modified National Institute of Standards and Technology (MNIST)[65].
图 13 (a) Au/PMMA/CsSnI3/Pt器件界面型机理示意图[49]; (b)电场作用下, p型钙钛矿层中锡空位的积累引起的耗尽宽度变化[49]; (c)界面型机理示意图
Figure 13. (a) Schematic of the interface-type switching mechanism in the Au/PMMA/CsSnI3/Pt device[49]; (b) depletion width variation in the p-type perovskite layer according to the accumulation of Sn vacancies under an electric field[49]; (c) the schematic illustration of interface-type switching mechanism in the switching layer
表 1 基于非铅卤素钙钛矿的阻变存储器的阻变性能
Table 1. Resistive switching performance of resistive switching memory parameters based on lead-free halide perovskites.
器件结构 设置/重置电压/V 开/关比 耐受性/次 保持特性/s Pt/CsSnBr3/Pt/PET[48] 0.2/–0.15 105 50 104 Ag/PMMA/CsSnI3/Pt/Ti/SiO2/Si[49] 0.15/–0.3 104 600 7 × 103 Au/Cs3Bi2I9/Pt/Ti/SiO2/Si[52] –0.5/0.1 107 400 103 Au/Rb3Bi2I9/Pt/Ti/SiO2/Si[52] –0.5/0.09 107 100 103 Al/CsBi3I10/ITO[54] –1.7/0.9 103 100 104 Au/Cs2AgBiBr6/ITO[55] –3.4/2 102 103 105 Au/Cs3Bi2I9/ITO[66] –0.5/0.3 102 103 104 Ag/PMMA/MA3Sb2Br9/ITO[58] 2.5/–0.5 102 300 104 Ag/PMMA/Cs3Cu2I5/ITO[65] –1/0.75 102 100 104 -
[1] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar
[2] Choi S, Shin J H, Lee J, Sheridan P, Lu W. D 2017 Nano Lett. 17 3113Google Scholar
[3] Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar
[4] Mao D, Mejia I, Salas-Villasenor A L, Singh M, Stiegler H, Gnade B E, Quevedo-Lopez M A 2013 Org. Electron. 14 505Google Scholar
[5] Jinnai B, Zhang C, Kurenkov A, Bersweiler M, Sato H, Fukami S, Ohno H 2017 Appl. Phys. Lett. 111 102402Google Scholar
[6] Zhou J, Ji H K, Lan T, Yan J W, Zhou W L, Miao X S. 2016 J. Electron. Mater. 44 235Google Scholar
[7] Chen Y Q, Liu X, Liu Y, Peng C, Fang W X, En Y F, Huang Y 2017 Appl. Phys. Lett. 111 232104Google Scholar
[8] Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mat. Sci. Eng. R. 83 1Google Scholar
[9] Lanza M, Wong H S P, Pop E, et al. 2019 Adv. Electron. Mater. 5 1800143Google Scholar
[10] Jang J, Choi H H, Paik S H, Kim J K, Chung S, Park J H 2018 Adv. Electron. Mater. 4 1800355Google Scholar
[11] Duan W, Rao C, Wang X, Pei Y Mater. 2018 Res. Express 6 016413Google Scholar
[12] Lee M J, Lee C B, Lee D, et al. 2011 Nat. Mater. 10 625Google Scholar
[13] Yang J J, Pickett M D, Li X, Ohlber g D A, Stewart D R, Williams R S 2008 Nat. Nanotechnol. 3 429Google Scholar
[14] Ng W H, Mehonic A, Buckwell M, Montesi L, Kenyon A J 2018 IEEE Trans. Nanotechnol. 17 884Google Scholar
[15] Song Y, Jang J, Yoo D, Jung S H, Hong S, Lee J K, Lee T 2015 Org. Electron. 17 192Google Scholar
[16] Busby Y, Crespo-Monteiro N, Girleanu M, Brinkmann M, Ersen O, Pireaux J J 2015 Org. Electron. 16 40Google Scholar
[17] You Y, Yang K, Yuan S, Dong S, Zhang H, Huang Q, Gillin W P, Zhan Y, Zheng L 2014 Org. Electron. 15 1983Google Scholar
[18] Suga T, Sakata M, Aoki K, Nishide H 2014 ACS Macro Lett. 3 703Google Scholar
[19] Lee H S, Kang K M, Han W J, Lee T W, Park C S, Choi Y J, Park H H 2014 Appl. Mech. Mater. 597 184Google Scholar
[20] Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar
[21] Li S, Zeng H Z, Zhang S Y, Wei X H 2013 Appl. Phys. Lett. 102 153506Google Scholar
[22] Cui Y, Peng H, Wu S, Wang R, Wu T 2013 ACS Appl. Mater. Inter. 5 1213Google Scholar
[23] Ielmini D 2016 Semicond. Sci. Technol. 6 063002Google Scholar
[24] Liu X, Ji Z, Liu M, Shang L, Li D, Dai Y 2011 Chin. Sci. Bull. 56 3178Google Scholar
[25] Panda D, Tseng T Y 2014 Ferroelectrics 471 23Google Scholar
[26] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar
[27] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[28] Eames C, Frost J M, Barnes P R, O'Regan B C 2015 Nat. Commun. 6 7497Google Scholar
[29] Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F 2015 Nat. Commun. 6 7124Google Scholar
[30] Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S 2015 Science 347 519Google Scholar
[31] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[32] Chin X Y, Perumal A, Bruno A, et al. 2018 Energ. Environ. Sci. 11 1770Google Scholar
[33] Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar
[34] Choi E S, Yang J M, Kim S G, Cuhadar C, Kim S Y, Kim S H, Lee D, Park N G 2019 Nanoscale 11 14455Google Scholar
[35] Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H, Kim H J 2017 Adv. Mater. Interfaces 4 1601035Google Scholar
[36] Kim S G, Van Le Q, Han J S, et al. 2019 Adv. Funct. Mater. 29 1906686Google Scholar
[37] Kim S Y, Yang J M, Choi E S, Park N G 2019 Nanoscale 11 14330Google Scholar
[38] Zhu Y Y, Cheng P W, Shi J, Wang H J, Liu Y, Xiong R, Ma H Y, Ma HX 2019 Adv. Electron. Mater. 2 1900754Google Scholar
[39] Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar
[40] Choi J, Han J S, Hong K, Kim S Y, Jang H W 2018 Adv. Mater. 30 1704002Google Scholar
[41] Kim H, Han J S, Kim G, Kim S Y, Jang H W 2019 J. Mater. Chem. C 7 5226Google Scholar
[42] Xiao X Y, Hu J, Tang S, Yan K, Gao B, Chen H L, Zou C 2020 Adv. Mater. Technol. 5 1900914Google Scholar
[43] Jeong D N, Yang J M, Park N G 2020 Nanotechnology 31 152001Google Scholar
[44] Li B X, Hui W, Ran X Q, Xia D, Xia F, Chao L F, Chen Y H, Huang W 2019 J. Mater. Chem. C 7 7476Google Scholar
[45] Mohd Yusoff A R B, Gao P, Nazeeruddin M K 2018 Coord. Chem. Rev. 373 258Google Scholar
[46] Schroeder H, Balassa J J 1961 J. Chronic Dis. 14 408Google Scholar
[47] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar
[48] Wang H J, Lin J Q, Zhu Y Y, Zeng X, Wei H, Cheng P W, Lu H B, Liu Y, Xiong R 2020 Adv. Electron. Mater. 11 202000799Google Scholar
[49] Han J S, Le Q V, Choi J, Kim H, Kim S G, Hong K, Moon C W, Kim T L, Kim S Y, Jang H W 2019 ACS Appl. Mater. Inter. 11 8155Google Scholar
[50] Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G 2015 J. Mater. Chem. A 3 23829Google Scholar
[51] Li M Q, Hu Y Q, Bi L Y, Zhang H L, Wang Y, Zheng Y Z 2017 Chem. Mater. 29 5463Google Scholar
[52] Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Lee D 2018 ACS Appl. Mater. Inter. 10 29741Google Scholar
[53] Liang G X, Chen X Y, Z H Chen, Lan H B, Zheng Z H, Fan P, Tian X Q, Duan J Y, Wei Y D, Su Z H 2019 J. Phys. Chem. C 123 27423Google Scholar
[54] Xiong Z, Hu W, She Y, Lin Q Q, Hu L J, Tang X S, Sun K 2019 ACS Appl. Mater. Inter. 11 30037Google Scholar
[55] Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar
[56] Sundar S, Chakravarty J 2010 Int. J. Environ. Res. Public Health 7 4267Google Scholar
[57] Ahmad K, Mobin S M 2020 ACS Omega 44 28404Google Scholar
[58] Yang J M, Choi E S, Kim S Y, Kim J H, Park J H, Park N G 2019 Nanoscale 11 6453Google Scholar
[59] Lewis J S, Laforest R, Buettner T L, et al. 2001 P. Natl. Acad. Sci. USA 3 1206Google Scholar
[60] Cui X P, Jiang K J, Huang J H, Zhang Q Q, Su M J, Yang L M, Song Y L, Zhou X Q 2015 Synthetic Met. 209 247Google Scholar
[61] Cortecchia D, Dewi H A, Yin J, et al. 2016 Inorg. Chem. 55 1044Google Scholar
[62] Yang P, Liu G, Liu B, Liu X, Lou Y, Chen J, Zhao Y 2018 Chem. Commun. 54 11638Google Scholar
[63] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar
[64] Zeng F J, Guo Y Y, Hu W, et al. 2020 J. Lumin. 223 117178Google Scholar
[65] Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Inter. 12 23094Google Scholar
[66] Hu Y Q, Zhang S F, Miao X L, Su L S, Bai F, Qiu T, Liu J Z, Yuan G L 2017 Adv. Mater. Interfaces 4 1700131Google Scholar
[67] Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114Google Scholar
[68] Nili H, Walia S, Kandjani A E, et al. 2015 Adv. Funct. Mater. 25 3172Google Scholar
Catalog
Metrics
- Abstract views: 7127
- PDF Downloads: 280
- Cited By: 0