-
To date, there has not been a consensus about the resistance switching mechanism of donor-doped SrTiO3. The La doped STO (LaSTO) single crystal is a donor-doped material and has an N-type conductivity since La3+ could easily substitute Sr2+. In this study, the Pt/LaSTO/In memory device is fabricated based on (100) LaSTO single crystal with 0.5 wt% La doping. Through a series of electrical tests, it is found that the Pt/LaSTO/In memory device has a stable multi-stage resistive switching property, and the maximum switching ratio is 104. The fitting I-V curve at the high resistance state (HRS) shows that there is an interface barrier in the memory device. However, the fitting I-V curve at low resistance state (LRS) is consistent with the characteristic of the electron tunneling model. The spectrum of electron paramagnetic resonance (EPR) indicates that LaSTO single crystal has only one EPR signal of g=2.012. Considering the fact that g=gobs-ge (where gobs is the g factor obtained from the sample, ge=2.0023 is the free electron value) is positive, the signal can be regarded as being due to hole center. The hole center is positively charged and can trap electrons. Comprehensive analysis indicates that the transition between the HRS and LRS of the device can be explained by the modulation of Pt/LaSTO interface barrier, which is caused by the electron trapping and detrapping of interfacial vacancy defects. In addition, it is found that illumination could reduce the low resistance of the Pt/LaSTO/In device. This is due to the photo-generated carriers causing a tunneling current because of the narrow Schottky barrier when the Pt/LaSTO/In device is in the LRS. However, the Schottky barrier plays a leading role in HRS, so the change in carrier concentration, caused by illumination, does not lead to a significant change in current for HRS. The experimental results provide theoretical and technical guidance for the applications of LaSTO single crystals in resistive memory devices.
-
Keywords:
- LaSTO single crystal /
- interface state /
- oxygen vacancy
[1] Souza R A D, Fleig J, Merkle R, Maier J 2003 Z. MetaIlkd. 94 218
[2] Wan T, Qu B, Du H W, Lin X, Guan P Y, Lin Q R, Chen N, Tan T T, Hang T, Chu D W 2017 J. Colloid Interf. Sci. 494 178
[3] Szot K, Speier W, Bihlmayer G, Waser R 2006 Nat. Mater. 5 312
[4] Janousch M, Meijer G, Staub U, Delley B, Karg S, Andreasson B 2007 Adv. Mater. 19 2232
[5] Wojtyniak M, Szot K, Wrzalik R, Rodenbcher C, Roth G, Waser R 2013 J. Appl. Phys. 113 083713
[6] Lenser C, Koehl A, Slipukhina I, Du H C, Patt M, Feyer V, Schneider C M, Lezaic M, Waser R, Dittmann R 2015 Adv. Funct. Mater. 25 6360
[7] Park J, Kwon D H, Park H, Jung C U, Kim M 2014 Appl. Phys. Lett. 105 183103
[8] Mojarad S A, Goss J P, Kwa K S K, Zhou Z Y, al-Hamadany R A S, Appleby D J R, Ponon N K, O'Neill A 2012 Appl. Phys. Lett. 101 173507
[9] Wang Y H, Shi X L, Zhao K H, Xie G L, Huang S Y, Zhang L W 2016 Appl. Surf. Sci. 364 718
[10] Yang M, Ren L Z, Wang Y J, Yu F M, Meng M, Zhou W Q, Wu S X, Li S W 2014 J. Appl. Phys. 115 134505
[11] Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601
[12] Yang M, Ma X, Wang H, Xi H, L L, Zhang P, Xie Y, Gao H X, Cao Y R, Li S W 2016 Mater. Res. Express 3 075903
[13] Snchez P, Stashans A 2001 Philos. Mag. B 81 1963
[14] Xu D L, Xiong Y, Tang M H, Zeng B W, Xiao Y G, Wang Z P 2013 Chin. Phys. B 22 117314
[15] Hirose S, Nakayama A, Niimi H, Kageyama K, Takagi H 2008 J. Appl. Phys. 104 053712
[16] Hirose S, Niimi H, Kageyama K, Ando A, Ieki H, Omata T 2013 Jpn J. Appl. Phys. 52 045802
[17] Carter E, And A F C, Murphy D M 2007 J. Phys. Chem. C 111 10630
[18] Kuznetsov V N, Serpone N 2009 J. Phys. Chem. C 113 245
[19] Caretti I, Keulemans M, Verbruggen S W, Lenaerts S, Doorslaer S V 2015 Top. Catal. 58 776
[20] Chen H D, Zhang F, Zhang W F, Du Y G, Li G Q 2018 Appl. Phys. Lett. 112 013901
[21] Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[22] Jin H W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808
[23] Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J, Seo S 2009 Appl. Phys. Lett. 95 022109
[24] Sun X W, Ding L H, Li G Q, Zhang W F 2014 Appl. Phys. A 115 147
[25] Jia C H, Sun X W, Li G Q, Chen Y H, Zhang W F 2014 Appl. Phys. Lett. 104 043501
[26] Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106
[27] Shang D S, Sun J R, Shi L, Wang Z H, Shen B G 2008 Appl. Phys. Lett. 93 172119
-
[1] Souza R A D, Fleig J, Merkle R, Maier J 2003 Z. MetaIlkd. 94 218
[2] Wan T, Qu B, Du H W, Lin X, Guan P Y, Lin Q R, Chen N, Tan T T, Hang T, Chu D W 2017 J. Colloid Interf. Sci. 494 178
[3] Szot K, Speier W, Bihlmayer G, Waser R 2006 Nat. Mater. 5 312
[4] Janousch M, Meijer G, Staub U, Delley B, Karg S, Andreasson B 2007 Adv. Mater. 19 2232
[5] Wojtyniak M, Szot K, Wrzalik R, Rodenbcher C, Roth G, Waser R 2013 J. Appl. Phys. 113 083713
[6] Lenser C, Koehl A, Slipukhina I, Du H C, Patt M, Feyer V, Schneider C M, Lezaic M, Waser R, Dittmann R 2015 Adv. Funct. Mater. 25 6360
[7] Park J, Kwon D H, Park H, Jung C U, Kim M 2014 Appl. Phys. Lett. 105 183103
[8] Mojarad S A, Goss J P, Kwa K S K, Zhou Z Y, al-Hamadany R A S, Appleby D J R, Ponon N K, O'Neill A 2012 Appl. Phys. Lett. 101 173507
[9] Wang Y H, Shi X L, Zhao K H, Xie G L, Huang S Y, Zhang L W 2016 Appl. Surf. Sci. 364 718
[10] Yang M, Ren L Z, Wang Y J, Yu F M, Meng M, Zhou W Q, Wu S X, Li S W 2014 J. Appl. Phys. 115 134505
[11] Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601
[12] Yang M, Ma X, Wang H, Xi H, L L, Zhang P, Xie Y, Gao H X, Cao Y R, Li S W 2016 Mater. Res. Express 3 075903
[13] Snchez P, Stashans A 2001 Philos. Mag. B 81 1963
[14] Xu D L, Xiong Y, Tang M H, Zeng B W, Xiao Y G, Wang Z P 2013 Chin. Phys. B 22 117314
[15] Hirose S, Nakayama A, Niimi H, Kageyama K, Takagi H 2008 J. Appl. Phys. 104 053712
[16] Hirose S, Niimi H, Kageyama K, Ando A, Ieki H, Omata T 2013 Jpn J. Appl. Phys. 52 045802
[17] Carter E, And A F C, Murphy D M 2007 J. Phys. Chem. C 111 10630
[18] Kuznetsov V N, Serpone N 2009 J. Phys. Chem. C 113 245
[19] Caretti I, Keulemans M, Verbruggen S W, Lenaerts S, Doorslaer S V 2015 Top. Catal. 58 776
[20] Chen H D, Zhang F, Zhang W F, Du Y G, Li G Q 2018 Appl. Phys. Lett. 112 013901
[21] Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[22] Jin H W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808
[23] Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J, Seo S 2009 Appl. Phys. Lett. 95 022109
[24] Sun X W, Ding L H, Li G Q, Zhang W F 2014 Appl. Phys. A 115 147
[25] Jia C H, Sun X W, Li G Q, Chen Y H, Zhang W F 2014 Appl. Phys. Lett. 104 043501
[26] Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106
[27] Shang D S, Sun J R, Shi L, Wang Z H, Shen B G 2008 Appl. Phys. Lett. 93 172119
Catalog
Metrics
- Abstract views: 6331
- PDF Downloads: 92
- Cited By: 0