Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

Guo Jia-Jun Dong Jing-Yu Kang Xin Chen Wei Zhao Xu

Citation:

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Resistance random access memory (RRAM) based on resistive switching in metal oxides has attracted considerable attention as a promising candidate for next-generation nonvolatile memory due to its high operating speed, superior scalability, and low power consumption. However, some operating parameters of RRAM cannot meet the practical requirement, which impedes its commercialization. A lot of experimental results show that doping is an effective method of improving the performance of RRAM, while the study on the physical mechanism of doping is rare. It is generally believed that the formation and rupture of conducting filaments, caused by the migration of oxygen vacancies under electric field play a major role in resistive switching of metal oxide materials. In this work, the first principle calculation based on density functional theory is performed to study the effects of transition metal element X (X=Mn, Fe, Co, and Ni) doping on the migration barriers and formation energy of oxygen vacancy in ZnO. The calculation results show that the migration barriers of both the monovalent and divalent oxygen vacancy are reduced significantly by Ni doping. This result indicates that the movement of oxygen vacancies in Ni doped ZnO is easier than in undoped ZnO RRAM device, thus Ni doping is beneficial to the formation and rupture of oxygen vacancy conducting filaments. Furthermore, the calculation results show that the formation energy of the oxygen vacancy in ZnO system can be reduced by X doping, especially by Ni doping. The formation energy of the oxygen vacancy decreases from 0.854 for undoped ZnO to 0.307 eV for Ni doped ZnO. Based on the above calculated results, Ni doped and undoped ZnO RRAM device are prepared by using pulsed laser deposition method under an oxygen pressure of 2 Pa. The Ni doped ZnO RRAM device shows the optimized forming process, low operating voltage (0.24 V and 0.34 V for Set and Reset voltage), and long retention time (>104 s). Set and Reset voltage in Ni doped ZnO device decrease by 80% and 38% respectively compared with those in undoped ZnO device. It is known that the density of oxygen vacancies in the device is dependent on the oxygen pressure during preparation. The Ni doped ZnO RRAM device under a higher oxygen pressure (5 Pa) is also prepared. The Ni doped ZnO RRAM device prepared under 5 Pa oxygen pressure shows a little higher Set and Reset voltage than the device prepared under 2 Pa oxygen pressure, while the operating voltages are still lower than those of undoped ZnO RRAM. Thus, the doping effect in the ZnO system is affected by the density of oxygen vacancies in the device. Our work provides a guidance for optimizing the performance of the metal oxide based RRAM device through element doping.
      Corresponding author: Chen Wei, chen07308@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574071).
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1] Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping. Simulation study of electron beam irradiation damage to ZnO and TiO2. Acta Physica Sinica, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [2] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [3] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [6] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [8] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [9] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [10] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [11] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] Yuan Di, Huang Duo-Hui, Luo Hua-Feng, Wang Fan-Hou. First-principles study of Li-N acceptor pair codoped p-type ZnO. Acta Physica Sinica, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [13] Yan Guo-Qing, Xie Kai-Xuan, Mo Zhong-Rong, Lu Zhong-Lin, Zou Wen-Qin, Wang Shen, Yue Feng-Juan, Wu Di, Zhang Feng-Ming, Du You-Wei. Room-temperature ferromagnetism in Co-doped ZnO fabricated by coprecipitation method. Acta Physica Sinica, 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [14] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [15] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [16] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [18] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
Metrics
  • Abstract views:  8646
  • PDF Downloads:  319
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2017
  • Accepted Date:  22 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回