-
Based on the nanocomposite structure and doping modification, we have studied the preparation technology of high performance nanocomposite thin film and its characterization methods. The W-doped VO2/ZnO nanocomposite thin films are prepared successfully on SiO2 substrates by the three-step method. The structure and morphology of the W-doped VO2/ZnO/SiO2 films are analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope. Results show that the films are mainly composed of VO2 and high valence cation W6+ replacing the V ion in the W-doped VO2/ZnO/SiO2 films. It is found that the flake nanocrystallines resemble a flower in shape, and its size and orientational growth are reduced. The thermochromic properties of W-doped VO2/ZnO films are measured and compared with the single-layer W-doped VO2 films on SiO2 substrates with the same thickness. The variation of infrared transmittance of the W-doped VO2/ZnO/SiO2 nanocomposite film is increased nearly two times, the phase transition temperature reduced approximately to 39 °C, and the width of the thermal hysteresis loop is about 6 °C. The W-doped VO2/ZnO/SiO2 nanocomposite film has a high infrared modulation ability, a lower phase transition temperature, and a narrower thermal hysteresis loop. Thus the potential application of this nanocomposite film is significantly improved.
-
Keywords:
- VO2 /
- ZnO /
- W-doped /
- thermochromism
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221
[3] Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032
[4] Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108
[5] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[6] Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016
[7] Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291
[8] Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452
[9] Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537
[10] Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835
[11] Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344
[12] Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922
[13] Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856
[14] Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]
[15] Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363
[16] Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]
[17] Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]
[18] Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750
[19] Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015
[20] Case F C 1987 Appl. Opt. 26 1550
[21] Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554
[22] He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]
[23] Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527
[24] Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221
[3] Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032
[4] Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108
[5] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[6] Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016
[7] Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291
[8] Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452
[9] Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537
[10] Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835
[11] Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344
[12] Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922
[13] Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856
[14] Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]
[15] Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363
[16] Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]
[17] Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]
[18] Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750
[19] Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015
[20] Case F C 1987 Appl. Opt. 26 1550
[21] Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554
[22] He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]
[23] Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527
[24] Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403
Catalog
Metrics
- Abstract views: 6965
- PDF Downloads: 1015
- Cited By: 0