搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La施主掺杂SrTiO3单晶的阻变性能研究

李广辉 夏婉莹 孙献文

引用本文:
Citation:

La施主掺杂SrTiO3单晶的阻变性能研究

李广辉, 夏婉莹, 孙献文

Resistance switching of La doped SrTiO3 single crystals

Li Guang-Hui, Xia Wan-Ying, Sun Xian-Wen
PDF
导出引用
  • 以La施主掺杂SrTiO3(LaSTO)单晶为样品,制备了Pt/LaSTO/In结构存储器件.通过一系列电学测试,发现该器件具有稳定的多级阻变现象,最大开关比为104;高低阻电流-电压关系曲线的拟合分析表明,高阻时存在界面势垒,而低阻时满足电子隧穿模型特性.电子顺磁共振研究表明LaSTO单晶内存在带正电的空穴缺陷中心.综合分析证明器件的高低阻之间的转变由界面空位缺陷导致的电子俘获与去俘获引起.此外发现光照会对LaSTO单晶的阻值产生影响.该实验结果为LaSTO单晶在阻变存储器件中的应用提供了理论和技术指导.
    To date, there has not been a consensus about the resistance switching mechanism of donor-doped SrTiO3. The La doped STO (LaSTO) single crystal is a donor-doped material and has an N-type conductivity since La3+ could easily substitute Sr2+. In this study, the Pt/LaSTO/In memory device is fabricated based on (100) LaSTO single crystal with 0.5 wt% La doping. Through a series of electrical tests, it is found that the Pt/LaSTO/In memory device has a stable multi-stage resistive switching property, and the maximum switching ratio is 104. The fitting I-V curve at the high resistance state (HRS) shows that there is an interface barrier in the memory device. However, the fitting I-V curve at low resistance state (LRS) is consistent with the characteristic of the electron tunneling model. The spectrum of electron paramagnetic resonance (EPR) indicates that LaSTO single crystal has only one EPR signal of g=2.012. Considering the fact that g=gobs-ge (where gobs is the g factor obtained from the sample, ge=2.0023 is the free electron value) is positive, the signal can be regarded as being due to hole center. The hole center is positively charged and can trap electrons. Comprehensive analysis indicates that the transition between the HRS and LRS of the device can be explained by the modulation of Pt/LaSTO interface barrier, which is caused by the electron trapping and detrapping of interfacial vacancy defects. In addition, it is found that illumination could reduce the low resistance of the Pt/LaSTO/In device. This is due to the photo-generated carriers causing a tunneling current because of the narrow Schottky barrier when the Pt/LaSTO/In device is in the LRS. However, the Schottky barrier plays a leading role in HRS, so the change in carrier concentration, caused by illumination, does not lead to a significant change in current for HRS. The experimental results provide theoretical and technical guidance for the applications of LaSTO single crystals in resistive memory devices.
      通信作者: 孙献文, sunxianwen@henu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11404093)和河南省科技厅项目(批准号:132102210258)资助的课题.
      Corresponding author: Sun Xian-Wen, sunxianwen@henu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404093) and the Foundation of Henan Provincial Science and Technology Department, China (Grant No. 132102210258).
    [1]

    Souza R A D, Fleig J, Merkle R, Maier J 2003 Z. MetaIlkd. 94 218

    [2]

    Wan T, Qu B, Du H W, Lin X, Guan P Y, Lin Q R, Chen N, Tan T T, Hang T, Chu D W 2017 J. Colloid Interf. Sci. 494 178

    [3]

    Szot K, Speier W, Bihlmayer G, Waser R 2006 Nat. Mater. 5 312

    [4]

    Janousch M, Meijer G, Staub U, Delley B, Karg S, Andreasson B 2007 Adv. Mater. 19 2232

    [5]

    Wojtyniak M, Szot K, Wrzalik R, Rodenbcher C, Roth G, Waser R 2013 J. Appl. Phys. 113 083713

    [6]

    Lenser C, Koehl A, Slipukhina I, Du H C, Patt M, Feyer V, Schneider C M, Lezaic M, Waser R, Dittmann R 2015 Adv. Funct. Mater. 25 6360

    [7]

    Park J, Kwon D H, Park H, Jung C U, Kim M 2014 Appl. Phys. Lett. 105 183103

    [8]

    Mojarad S A, Goss J P, Kwa K S K, Zhou Z Y, al-Hamadany R A S, Appleby D J R, Ponon N K, O'Neill A 2012 Appl. Phys. Lett. 101 173507

    [9]

    Wang Y H, Shi X L, Zhao K H, Xie G L, Huang S Y, Zhang L W 2016 Appl. Surf. Sci. 364 718

    [10]

    Yang M, Ren L Z, Wang Y J, Yu F M, Meng M, Zhou W Q, Wu S X, Li S W 2014 J. Appl. Phys. 115 134505

    [11]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601

    [12]

    Yang M, Ma X, Wang H, Xi H, L L, Zhang P, Xie Y, Gao H X, Cao Y R, Li S W 2016 Mater. Res. Express 3 075903

    [13]

    Snchez P, Stashans A 2001 Philos. Mag. B 81 1963

    [14]

    Xu D L, Xiong Y, Tang M H, Zeng B W, Xiao Y G, Wang Z P 2013 Chin. Phys. B 22 117314

    [15]

    Hirose S, Nakayama A, Niimi H, Kageyama K, Takagi H 2008 J. Appl. Phys. 104 053712

    [16]

    Hirose S, Niimi H, Kageyama K, Ando A, Ieki H, Omata T 2013 Jpn J. Appl. Phys. 52 045802

    [17]

    Carter E, And A F C, Murphy D M 2007 J. Phys. Chem. C 111 10630

    [18]

    Kuznetsov V N, Serpone N 2009 J. Phys. Chem. C 113 245

    [19]

    Caretti I, Keulemans M, Verbruggen S W, Lenaerts S, Doorslaer S V 2015 Top. Catal. 58 776

    [20]

    Chen H D, Zhang F, Zhang W F, Du Y G, Li G Q 2018 Appl. Phys. Lett. 112 013901

    [21]

    Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403

    [22]

    Jin H W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [23]

    Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J, Seo S 2009 Appl. Phys. Lett. 95 022109

    [24]

    Sun X W, Ding L H, Li G Q, Zhang W F 2014 Appl. Phys. A 115 147

    [25]

    Jia C H, Sun X W, Li G Q, Chen Y H, Zhang W F 2014 Appl. Phys. Lett. 104 043501

    [26]

    Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106

    [27]

    Shang D S, Sun J R, Shi L, Wang Z H, Shen B G 2008 Appl. Phys. Lett. 93 172119

  • [1]

    Souza R A D, Fleig J, Merkle R, Maier J 2003 Z. MetaIlkd. 94 218

    [2]

    Wan T, Qu B, Du H W, Lin X, Guan P Y, Lin Q R, Chen N, Tan T T, Hang T, Chu D W 2017 J. Colloid Interf. Sci. 494 178

    [3]

    Szot K, Speier W, Bihlmayer G, Waser R 2006 Nat. Mater. 5 312

    [4]

    Janousch M, Meijer G, Staub U, Delley B, Karg S, Andreasson B 2007 Adv. Mater. 19 2232

    [5]

    Wojtyniak M, Szot K, Wrzalik R, Rodenbcher C, Roth G, Waser R 2013 J. Appl. Phys. 113 083713

    [6]

    Lenser C, Koehl A, Slipukhina I, Du H C, Patt M, Feyer V, Schneider C M, Lezaic M, Waser R, Dittmann R 2015 Adv. Funct. Mater. 25 6360

    [7]

    Park J, Kwon D H, Park H, Jung C U, Kim M 2014 Appl. Phys. Lett. 105 183103

    [8]

    Mojarad S A, Goss J P, Kwa K S K, Zhou Z Y, al-Hamadany R A S, Appleby D J R, Ponon N K, O'Neill A 2012 Appl. Phys. Lett. 101 173507

    [9]

    Wang Y H, Shi X L, Zhao K H, Xie G L, Huang S Y, Zhang L W 2016 Appl. Surf. Sci. 364 718

    [10]

    Yang M, Ren L Z, Wang Y J, Yu F M, Meng M, Zhou W Q, Wu S X, Li S W 2014 J. Appl. Phys. 115 134505

    [11]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601

    [12]

    Yang M, Ma X, Wang H, Xi H, L L, Zhang P, Xie Y, Gao H X, Cao Y R, Li S W 2016 Mater. Res. Express 3 075903

    [13]

    Snchez P, Stashans A 2001 Philos. Mag. B 81 1963

    [14]

    Xu D L, Xiong Y, Tang M H, Zeng B W, Xiao Y G, Wang Z P 2013 Chin. Phys. B 22 117314

    [15]

    Hirose S, Nakayama A, Niimi H, Kageyama K, Takagi H 2008 J. Appl. Phys. 104 053712

    [16]

    Hirose S, Niimi H, Kageyama K, Ando A, Ieki H, Omata T 2013 Jpn J. Appl. Phys. 52 045802

    [17]

    Carter E, And A F C, Murphy D M 2007 J. Phys. Chem. C 111 10630

    [18]

    Kuznetsov V N, Serpone N 2009 J. Phys. Chem. C 113 245

    [19]

    Caretti I, Keulemans M, Verbruggen S W, Lenaerts S, Doorslaer S V 2015 Top. Catal. 58 776

    [20]

    Chen H D, Zhang F, Zhang W F, Du Y G, Li G Q 2018 Appl. Phys. Lett. 112 013901

    [21]

    Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403

    [22]

    Jin H W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [23]

    Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J, Seo S 2009 Appl. Phys. Lett. 95 022109

    [24]

    Sun X W, Ding L H, Li G Q, Zhang W F 2014 Appl. Phys. A 115 147

    [25]

    Jia C H, Sun X W, Li G Q, Chen Y H, Zhang W F 2014 Appl. Phys. Lett. 104 043501

    [26]

    Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106

    [27]

    Shang D S, Sun J R, Shi L, Wang Z H, Shen B G 2008 Appl. Phys. Lett. 93 172119

  • [1] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [2] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [3] 代美芹, 张清悦, 赵秋玲, 王茂榕, 王霞. 一维反转对称光子结构中界面态的可调控特性. 物理学报, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [4] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [5] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [6] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [7] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [8] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [9] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [10] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [11] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [12] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [13] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [14] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [18] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究. 物理学报, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  6267
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2018-06-26
  • 刊出日期:  2019-09-20

/

返回文章
返回