搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-Cr共掺LiZnP新型稀磁半导体的光电性质

杜成旭 王婷 杜颖妍 贾倩 崔玉亭 胡爱元 熊元强 毋志民

引用本文:
Citation:

Ag-Cr共掺LiZnP新型稀磁半导体的光电性质

杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民

Photoelectric properties of Ag and Cr co-doped LiZnP new diluted magnetic semiconductors

Du Cheng-Xu, Wang Ting, Du Ying-Yan, Jia Qian, Cui Yu-Ting, Hu Ai-Yuan, Xiong Yuan-Qiang, Wu Zhi-Min
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理平面波超软赝势法,对纯LiZnP,Ag/Cr单掺和Ag-Cr共掺LiZnP新型稀磁半导体进行了结构优化,计算并分析了掺杂体系的电子结构、磁性、形成能、差分电荷密度和光学性质.结果表明:非磁性元素Ag单掺后,材料表现为金属顺磁性;磁性元素Cr单掺后,sp-d杂化使态密度峰出现劈裂,体系变成金属铁磁性;而Ag-Cr共掺后,其性质与Ag和Cr单掺完全不同,变为半金属铁磁性,带隙值略微减小,导电能力增强,同时形成能降低,原子间的相互作用和键强度增强,晶胞的稳定性增强.通过比较光学性质发现,掺杂体系的介电函数虚部和光吸收谱在低能区均出现新的峰值,且当Ag-Cr共掺时介电峰峰值最高,同时复折射率函数在低能区发生明显变化,吸收边向低能方向延展,体系对低频电磁波吸收加强.
    Spintronic devices utilize the electron charge and spin degree of freedom to achieve novel quantum functionalities. Diluted magnetic semiconductors (DMS) constitute an important category of spintronic materials that have the potential to be successfully incorporated into the existing semiconductor industry. The prototypical DMS (Ga,Mn) As, discovered in the 1990s, accomplishes spin and charge doping simultaneously through the heterovalent substitution of the magnetic ion Mn2+ for Ga3+. Two challenges have presented themselves in this material. First, the heterovalent nature of this integrated spin/charge doping results in severely limited chemical solubility in (Ga,Mn) As, restricting specimen fabrication to metastable thin films by molecular beam epitaxy; second, the simultaneous spin and charge doping precludes the possibility of individually tuning the spin and charge degree of freedom. A new type of ferromagnetic DMS based on I-Ⅱ-V group can overcome both of these challenges. Li(Zn,Mn) As utilizes excess Li concentration to introduce hole carriers, while independently making the isovalent substitution of Mn2+ for Zn2+ in order to achieve local spin doping. With no heterovalent substitution to restrict chemical solubility, bulk samples of Li(Zn,Mn) As are successfully fabricated. However, one drawback of Li(Zn,Mn) As is its use of the toxic element As. The isostructural direct-gap semiconductor LiZnP also undergoes a ferromagnetic transition upon Mn doping, and its bulk magnetic properties are very similar to those of LiZnAs. In this paper, the geometric structure of pure LiZnP, Ag doped, Cr doped, and Ag-Cr co-doped LiZnP new diluted magnetic semiconductor are optimized by using the first-principles plane wave ultra-soft pseudo-potential technology based on the density function theory. Then we calculate the electronic structure, magnetism, formation energy, differential charge density, and optical properties of the doped systems. The results show that the material is a paramagnetic metal after single doping of the nonmagnetic element Ag. When magnetic element Cr is doped with LiZnP, sp-d orbital hybridization makes the peak of density of state nearly EF-split, leading the system to become metallic ferromagnetism. However, Ag-Cr co-doped LiZnP changes into half-metallic ferromagnetism, which is completely different from the single doping system. The band gap decreases slightly, and the electrical conductivity is enhanced. Meanwhile, the formation energy of the system becomes lower, the bond between atoms strengthens, and the stability of the unit cell becomes stronger. A comparison of the optical properties indicate that the imaginary part of dielectric function and the optical absorption spectrum both present new peaks in low energy region in the doped systems. Ag-Cr co-doped LiZnP has the highest dielectric peak. Meanwhile, the complex refractive index function changes obviously in a low energy region, and the absorption edge extends to the low energy direction. The system enhances the absorption of low-frequency electromagnetic waves.
      通信作者: 毋志民, zmwu@cqnu.edu.cn
    • 基金项目: 重庆市基础与前沿研究计划(批准号:cstc2014jcyjA50005)、重庆师范大学教育名师培育计划(批准号:02030307-00031)、重庆高校创新团队计划(批准号:CXTDX201601016)和重庆市研究生科研创新项目(批准号:CYS17179)资助的课题.
      Corresponding author: Wu Zhi-Min, zmwu@cqnu.edu.cn
    • Funds: Project supported by the Project for Basic Science and Advanced Research of Chongqing, China (Grant No. cstc2014jcyjA50005), the Training Program for Education Teacher of Chongqing Normal University, China (Grant No. 02030307-00031), the Foundation for the Creative Research Groups of Higher Education of Chongqing, China (Grant No. CXTDX201601016), and the Research and Innovation Project of Graduate Student of Chongqing, China (Grant No. CYS17179).
    [1]

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]

    [2]

    Wang Y, Zhan Y Z, Xu Y F, Yu Z W 2007 Mate. Rev. 21 20 (in Chinese) [王颖, 湛永钟, 许艳飞, 喻正文 2007 材料导报 21 20]

    [3]

    Deng Z, Zhao K, Jin C Q 2013 Physics 10 682 (in Chinese) [邓正, 赵侃, 靳常青 2013 物理 10 682]

    [4]

    Maek J, Kudrnovsky J, Mca F, Gallagher B L, Campion R P, Gregory D H, Jungwirth T 2007 Phys. Rev. Lett. 98 067202

    [5]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C 2011 Nat. Commun. 2 422

    [6]

    Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 物理学报 62 137101]

    [7]

    Qin C 2013 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese) [秦川 2013 硕士学位论文 (杭州: 浙江大学)]

    [8]

    Jairo Sinova J, Maek J, Kučera J, MacDonald A H 2006 Rev. Mod. Phys. 78 809

    [9]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D'Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102

    [10]

    Guan Y Q, Chen Y, Zhao C W 2010 Mat. Sci. Eng. Pow. Met. 15 521 (in Chinese) [关玉琴, 陈余, 赵春旺 2010 粉末冶金材料科学与工程 15 521]

    [11]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [12]

    Lin Z, Guo Z Y, Bi Y J, Dong Y C 2009 Acta Phys. Sin. 58 1917 (in Chinese) [林竹, 郭志友, 毕艳军, 董玉成 2009 物理学报 58 1917]

    [13]

    Wu Z H, Xie H Q, Zen Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 物理学报 62 097301]

    [14]

    Deng J Q, Wu Z M, Wang A L, Hu A Y, Zhao R Y 2014 Comp. Phys. 31 617 (in Chinese) [邓军权, 毋志民, 王爱玲, 胡爱元, 赵若禺 2014 计算物理 31 617]

    [15]

    Chen B J, Deng Z, Li W M, Gao M, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 Aip. Adv. 6 115014

    [16]

    Wei S H, Zunger A 1986 Phys. Rev. Lett. 56 528

    [17]

    Kuriyama K, Nakamura F 1987 Phys. Rev. B 36 4439

    [18]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Cond. Mat. 14 2717

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3138]

    [22]

    Guan L, Li Q, Zhao Q S, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624]

    [23]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101 (in Chinese) [文平, 李春福, 赵毅, 张凤春, 童丽华 2014 物理学报 63 197101]

    [24]

    Ru Q, Li Y L, Hu S J, Peng W, Zhang Z W 2012 Acta Phys. Sin. 61 038210 (in Chinese) [汝强, 李燕玲, 胡社军, 彭薇, 张志文 2012 物理学报 61 038210]

    [25]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 物理学报 56 5359]

  • [1]

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]

    [2]

    Wang Y, Zhan Y Z, Xu Y F, Yu Z W 2007 Mate. Rev. 21 20 (in Chinese) [王颖, 湛永钟, 许艳飞, 喻正文 2007 材料导报 21 20]

    [3]

    Deng Z, Zhao K, Jin C Q 2013 Physics 10 682 (in Chinese) [邓正, 赵侃, 靳常青 2013 物理 10 682]

    [4]

    Maek J, Kudrnovsky J, Mca F, Gallagher B L, Campion R P, Gregory D H, Jungwirth T 2007 Phys. Rev. Lett. 98 067202

    [5]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C 2011 Nat. Commun. 2 422

    [6]

    Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 物理学报 62 137101]

    [7]

    Qin C 2013 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese) [秦川 2013 硕士学位论文 (杭州: 浙江大学)]

    [8]

    Jairo Sinova J, Maek J, Kučera J, MacDonald A H 2006 Rev. Mod. Phys. 78 809

    [9]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D'Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102

    [10]

    Guan Y Q, Chen Y, Zhao C W 2010 Mat. Sci. Eng. Pow. Met. 15 521 (in Chinese) [关玉琴, 陈余, 赵春旺 2010 粉末冶金材料科学与工程 15 521]

    [11]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [12]

    Lin Z, Guo Z Y, Bi Y J, Dong Y C 2009 Acta Phys. Sin. 58 1917 (in Chinese) [林竹, 郭志友, 毕艳军, 董玉成 2009 物理学报 58 1917]

    [13]

    Wu Z H, Xie H Q, Zen Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 物理学报 62 097301]

    [14]

    Deng J Q, Wu Z M, Wang A L, Hu A Y, Zhao R Y 2014 Comp. Phys. 31 617 (in Chinese) [邓军权, 毋志民, 王爱玲, 胡爱元, 赵若禺 2014 计算物理 31 617]

    [15]

    Chen B J, Deng Z, Li W M, Gao M, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 Aip. Adv. 6 115014

    [16]

    Wei S H, Zunger A 1986 Phys. Rev. Lett. 56 528

    [17]

    Kuriyama K, Nakamura F 1987 Phys. Rev. B 36 4439

    [18]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Cond. Mat. 14 2717

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3138]

    [22]

    Guan L, Li Q, Zhao Q S, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624]

    [23]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101 (in Chinese) [文平, 李春福, 赵毅, 张凤春, 童丽华 2014 物理学报 63 197101]

    [24]

    Ru Q, Li Y L, Hu S J, Peng W, Zhang Z W 2012 Acta Phys. Sin. 61 038210 (in Chinese) [汝强, 李燕玲, 胡社军, 彭薇, 张志文 2012 物理学报 61 038210]

    [25]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 物理学报 56 5359]

  • [1] 何建林, 刘贵立, 李欣玥. 扭转变形对掺金黑磷烯电子结构和光学性质的影响. 物理学报, 2021, 70(22): 226301. doi: 10.7498/aps.70.20210795
    [2] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [3] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [4] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [5] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [6] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [7] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [8] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [10] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [13] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质. 物理学报, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [15] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
计量
  • 文章访问数:  6204
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-15
  • 修回日期:  2018-06-15
  • 刊出日期:  2019-09-20

/

返回文章
返回