搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭转变形对掺金黑磷烯电子结构和光学性质的影响

何建林 刘贵立 李欣玥

引用本文:
Citation:

扭转变形对掺金黑磷烯电子结构和光学性质的影响

何建林, 刘贵立, 李欣玥

Effect of twisting deformation on electronic structure and optical properties of gold-doped black phosphorene

He Jian-Lin, Liu Gui-Li, Li Xin-Yue
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理方法研究了扭转变形对掺金黑磷烯电子结构和光学性质的影响. 研究发现, 与本征黑磷烯受扭体系相比, 掺金黑磷烯体系的电子结构对扭转变形的敏感度提高. 能带结构分析发现, 本征黑磷烯是直接带隙半导体, 金掺杂后, 可实现其从半导体到金属的转变. 掺金黑磷烯体系扭转1°后, 带隙被打开, 成为间接带隙半导体. 随着扭转角的增加, 本征黑磷烯体系的带隙增长缓慢, 而掺金黑磷烯体系的带隙呈先减小后增加, 再减小的趋势. 从态密度分析发现, 扭转角为0°—5°时, 本征黑磷烯体系具有很强的sp轨道杂化, s轨道和p轨道对导带和价带均有贡献, 但p轨道比s轨道对总态密度的贡献更多, 而掺金黑磷烯体系的s轨道、p轨道、d轨道对总态密度均有贡献. 从光学性质分析发现, 与扭转角为0°的本征黑磷烯体系相比, 本征黑磷烯受扭体系在吸收峰和反射峰处均出现蓝移, 掺金黑磷烯受扭体系在吸收峰和反射峰处均出现红移.
    The first-principles method based on density functional theory is used to study the effect of torsion deformation on the electronic structure and optical properties of gold-doped black phosphorene. The results show that the electronic structure of the gold-doped black phosphorene system is more sensitive to torsion deformation than that of the intrinsic black phosphorene system under torsion. The analysis of the energy band structure indicates that intrinsic black phosphorene is a direct band gap semiconductor. After being doped with gold, it can realize its transformation from semiconductor into metal. After the gold-doped black phosphorene system is twisted by 1°, the band gap is opened and becomes an indirect band gap semiconductor. As the torsion angle increases, the band gap of the intrinsic black phosphorene system increases slowly, while the band gap of the gold-doped black phosphorene system first decreases, then increases, and then decreases. From the analysis of the density of states, it is found that when the torsion angle changes from 0° to 5°, the intrinsic black phosphorene system has a strong sp orbital hybridization. The s orbit and p orbit contribute to the conduction band and the valence band, but the p orbit is better than the s orbit. The contribution to the total density of states is more, and the s orbital, p orbital and d orbital of the gold-doped black phosphorene system all contribute to the total density of states. From the analysis of optical properties, it is found that compared with the intrinsic black phosphorene system with a torsion angle of 0°, the intrinsic black phosphorene twisted system exhibits a blue shift at the absorption peak and reflection peak, and the gold-doped black phosphorene twisted system exhibits a blue shift in both absorption peak and reflection peak. Both the absorption peak and the reflection peak are red-shifted.
      通信作者: 刘贵立, lgl63@sina.cn
    • 基金项目: 辽宁省教育部项目(批准号: LZGD2019003)资助的课题.
      Corresponding author: Liu Gui-Li, lgl63@sina.cn
    • Funds: Project supported by Liaoning Provincial Department of Education Project, China (Grant No. LZGD2019003).
    [1]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802

    [2]

    Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar

    [3]

    Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar

    [4]

    Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar

    [5]

    Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371

    [6]

    Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar

    [7]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [8]

    He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar

    [9]

    Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar

    [10]

    Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601

    [11]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [12]

    张倩, 金鑫鑫, 张梦, 郑铮 2020 物理学报 69 188101Google Scholar

    Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar

    [13]

    Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar

    [14]

    Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar

    [15]

    Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367

    [16]

    Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar

    [17]

    Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar

    [18]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [19]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar

    [20]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [21]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [22]

    Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar

    [23]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [24]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [25]

    Stockman M I 2010 Nature 467 541Google Scholar

    [26]

    Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [30]

    杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)

    Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)

    [31]

    Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar

  • 图 1  黑磷烯模型 (a) 本征黑磷烯俯视图; (b) 本征黑磷烯侧视图; (c) 掺金黑磷烯俯视图; (d) 掺金黑磷烯侧视图

    Fig. 1.  Black phosphorene model: (a) Top view of undoped black phosphorene; (b) side view of undoped black phosphorene; (c) top view of gold-doped black phosphorene; (d) side view of gold-doped black phosphorene.

    图 2  带有θ扭转角的黑磷结构 (a) 俯视图; (b)主视图

    Fig. 2.  Black phosphorous structure with θ torsion angle: (a) Top view; (b) front view.

    图 3  电子结构 (a) 本征黑磷烯能带图和态密度; (b) 掺金黑磷烯能带图和态密度

    Fig. 3.  Electronic structure: (a) Intrinsic black phosphorous band diagram and density of states; (b) gold-doped black phosphorous band diagram and density of states.

    图 4  (a)−(e)本征黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度; (f)−(j)掺金黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度

    Fig. 4.  (a)−(e) The energy band diagram and density of states of intrinsic black phosphorene at twist angles of 1°, 2°, 3°, 4° and 5°; (f)−(j) gold-doped black phosphorene at twist angles are Band diagram and density of states at 1°, 2°, 3°, 4° and 5°.

    图 5  本征黑磷烯和掺金黑磷的能带随扭转角的变化

    Fig. 5.  The energy bands of black phosphorene and gold-doped black phosphorene change with twist angle.

    图 6  (a), (d) 本征黑磷烯和掺金黑磷烯在扭转角为0°, 1°, 2°, 3°, 4°和5°下的吸收系数和反射率; (b), (c) 图(a)的放大视图; (e), (f) 图(d)的放大视图

    Fig. 6.  (a), (d) The absorption coefficient and reflectivity of intrinsic black phosphorene and gold-doped black phosphorene at twist angles of 0°, 1°, 2°, 3°, 4° and 5°; (b), (c) magnified view of Figure (a); (e), (f) magnified views of Figure (d).

    表 1  本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的结合能

    Table 1.  Binding energy of intrinsic black phosphorene system and gold-doped black phosphorene system under different torsion angles.

    扭转角
    结合能
    本征黑磷
    烯/eV
    –191.18–190.97–190.31–189.10–187.17 –184.27
    掺金黑磷
    烯/eV
    –185.78–185.58–184.92–183.73–181.83–178.96
    下载: 导出CSV

    表 2  本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的带隙值

    Table 2.  Band gap values of intrinsic black phosphorene system and gold-doped black phosphorene system under different twist angles.

    扭转角
    带隙
    本征黑磷烯/eV0.8990.9050.9080.9110.9140.918
    掺金黑磷烯/eV0.7580.7530.7620.7030.534
    下载: 导出CSV
  • [1]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802

    [2]

    Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar

    [3]

    Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar

    [4]

    Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar

    [5]

    Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371

    [6]

    Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar

    [7]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [8]

    He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar

    [9]

    Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar

    [10]

    Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601

    [11]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [12]

    张倩, 金鑫鑫, 张梦, 郑铮 2020 物理学报 69 188101Google Scholar

    Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar

    [13]

    Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar

    [14]

    Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar

    [15]

    Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367

    [16]

    Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar

    [17]

    Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar

    [18]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [19]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar

    [20]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [21]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [22]

    Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar

    [23]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [24]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [25]

    Stockman M I 2010 Nature 467 541Google Scholar

    [26]

    Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [30]

    杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)

    Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)

    [31]

    Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar

  • [1] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] 杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民. Ag-Cr共掺LiZnP新型稀磁半导体的光电性质. 物理学报, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [4] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [5] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [8] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [10] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [11] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [12] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [16] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  2911
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-05-29
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回