Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-parameter tunable phase transition based terahertz graphene plasmons and its application

Li Ze-Yu Jiang Qu-Han Ma Teng-Zhou Yuan Ying-Hao Chen Lin

Citation:

Multi-parameter tunable phase transition based terahertz graphene plasmons and its application

Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin
PDF
HTML
Get Citation
  • The active modulation of the amplitude and phase of terahertz wave has been widely adopted in terahertz functional devices. The current metal-insulator-metal metasurface structure combined with two-dimensional materials such as graphene can realize dynamic control of terahertz amplitude/phase, but it has some disadvantages such as less freedom of control (voltage or light intensity), complex processing technology and high price of metasurface structure. In this article, we propose a prism-coupled matel-insulator-graphene (MIG) phase regulation structure. This structure can not only control the phase by adjusting the Fermi level in the usual way, but also change the intrinsic loss and radiation loss of the structure by adjusting the thickness of the air gap and the number of layers of pre-spread graphene, so that the phase of the structure can be controlled, which is determined by the difference between intrinsic loss and radiation loss of the fabric, which is closely related to this structure staying in the under-coupling/over-coupling state. The adjustment of the structural phase can also lead the magnitude of the terahertz Goos–Hänchen(GH) displacement and its positive sign and negative sign to be selected. Furthermore, it is shown that the under-coupling state and the over-coupling state of the structure have an important effect on the coincidence of the Goos–Hanchen (GH) displacement. The results show that by dynamically adjusting the thickness of the air gap and the Fermi level of graphene, and changing the eigenloss and radiation loss of the system, the phase regulation can be achieved. Finally, the transition from overdamped to underdamped state is realized. In this physical process, the GH displacement of the system will also change obviously. This paper puts forward the structure of the process with simple processing technology (no need to microstructure), tunable high degrees of freedom (available graphene Fermi level and air gap dynamic regulation, also could be regulated and controlled by controlling the graphene layers) in comparison with the phase modulator of metal-insulator-metal super surface structure. The results of this paper open up a new way of developing the multi-parameter tunable terahertz sensor components.
      Corresponding author: Yuan Ying-Hao, yhyuan@usst.edu.cn
    • Funds: Project supported by the National key R&D Program (Grant Nos. 2018YFF01013000, 2019YFC0810900), the National Natural Science Foundation of China (Grant No. 61671302), the Shanghai Shuguang Program, China (Grant No. 18SG44), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 61988102), the Shanghai Central Government Guided Local Science and Technology Development Project, China (Grant No. YDZX20193100004960), the Scientific Research Project of the General Administration of Customs, China (Grant No. 2020HK251).
    [1]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807Google Scholar

    [2]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [3]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [4]

    Sievenpiper D, Zhang L J, Broas R F J, et al. 1999 IEEE Trans. Microwave Theory Tech. 47 2059Google Scholar

    [5]

    Zhou L, Wen W J, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 3257Google Scholar

    [6]

    Anders P, Sergey I B 2013 Opt. Express 21 27438Google Scholar

    [7]

    Dai Ch L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T 2020 InfoMat. 2 12039

    [8]

    Ding L, Qiu T Y, Zhang J, Wen X 2019 J. Opt. 21 125602Google Scholar

    [9]

    Hu T, Bingham C M, Strikwerda A C, et al. 2008 Phys. Rev. B 78 241103Google Scholar

    [10]

    Hao J M, Wang J, Liu X L, Willie J P, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [11]

    Liu N, Martin M, Thomas W, Mario H, Harald G 2010 Nano Lett. 10 2342Google Scholar

    [12]

    Claire M W, Liu X L, Willie J P 2012 Adv. Mater. 24 OP98

    [13]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano Lett. 12 6223Google Scholar

    [14]

    Anders P, Ole A, Ilya P R, Sergey I B 2013 Sci. Rep. 3 2155Google Scholar

    [15]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [16]

    Anders P, Michael G. N, René L E, Sergey I B 2013 Nano Lett. 13 829Google Scholar

    [17]

    Chen L, Wei M Y, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [18]

    Chen L, Xu N N, Leena S, Cui T J, Ranjan S, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [19]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024

    [20]

    Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B, Zhou L 2015 Phys. Rev. X 5 041027

    [21]

    Qu C, Ma S J, Hao J M, Qiu M, et al. 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [22]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [23]

    Cong L Q, Pitchappa P, Lee C K, Singh R 2017 Adv. Mater. 29 1700733Google Scholar

    [24]

    Chen L, Ge Y F, Zang X F, et al. 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [25]

    Yin S, Shi X T, Huang W, Zhang W T, Hu F R, Qin Z J, Xiong X M 2019 Electronics 8 1528Google Scholar

    [26]

    Li J S, Wu J F, Zhang L 2014 IEEE Photonics J. 6 2374591

    [27]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [28]

    Chen L, Cao Z Q, Shen Q S, Deng X X 2007 J. Lightwave Technol. 25 539Google Scholar

    [29]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [30]

    Chen L, Cao Z Q, Ou F, Li H G, Shen Q S, Qiao H C 2007 Opt. Lett. 32 1432Google Scholar

    [31]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

  • 图 1  棱镜耦合石墨烯等离激元结构示意图

    Figure 1.  Schematic diagram of prism coupled graphene plasmons.

    图 2  不同费米能级下石墨烯电导率的实部虚部随频率的变化曲线 (a) 石墨烯电导率实部 (b) 石墨烯电导率虚部

    Figure 2.  Curves of real and imaginary parts of graphene conductivity with frequency at different Fermi levels: (a) The real part of graphene conductivity; (b) the imaginary part of graphene conductivity.

    图 3  在不同费米能级下, 系统的反射率(a)、相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随费米能级的变化产生的突变

    Figure 3.  The reflectance(a), phase (b), and GH shift (c) of the system are corresponding to frequency at different Fermi levels; (d) GH shifts with respect to Fermi levels.

    图 4  在不同的空气层厚度下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随空气隙厚度的变化产生的突变

    Figure 4.  The reflectance(a), phase (b) and GH displacement (c) of the system are corresponding to the frequency at different air layer thicknesses; (d) GH shifts with respect to air layer thicknesses

    图 5  在不同的石墨烯层数下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随石墨烯层数的变化产生的突变

    Figure 5.  The reflectance (a), phase (b), and GH shift (c) of the system are corresponding to frequency at different graphene layers; (d) GH shifts with respect to number of graphene layers.

    图 6  结构体系的临界阻尼分界图

    Figure 6.  Critical condition of perfect damping match.

    图 7  在空气腔中(a)不同的折射率变化下, 系统的反射率(c), 相位(b)和GH位移(d)随频率的对应关系

    Figure 7.  The reflectance (c), phase (b) and GH displacement (d) of the system as a function of frequency under different refractive index changes in the air cavity (a).

    图 8  (a) 反射共振频率随折射率的变化(灵敏度为160 GHz/RIU); (b) GH位移强度随折射率的变化(灵敏度为2.1×104 λ/RIU)

    Figure 8.  (a) Reflection resonant frequency as a function of refractive index (sensitivity is 160 GHz/RIU); (b) GH shift intensity as a function of refractive index (Sensitivity is 2.1 × 104 λ /RIU).

    图 9  测GH位移的实验方案

    Figure 9.  Experimental scheme for measuring GH shift.

  • [1]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807Google Scholar

    [2]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [3]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [4]

    Sievenpiper D, Zhang L J, Broas R F J, et al. 1999 IEEE Trans. Microwave Theory Tech. 47 2059Google Scholar

    [5]

    Zhou L, Wen W J, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 3257Google Scholar

    [6]

    Anders P, Sergey I B 2013 Opt. Express 21 27438Google Scholar

    [7]

    Dai Ch L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T 2020 InfoMat. 2 12039

    [8]

    Ding L, Qiu T Y, Zhang J, Wen X 2019 J. Opt. 21 125602Google Scholar

    [9]

    Hu T, Bingham C M, Strikwerda A C, et al. 2008 Phys. Rev. B 78 241103Google Scholar

    [10]

    Hao J M, Wang J, Liu X L, Willie J P, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [11]

    Liu N, Martin M, Thomas W, Mario H, Harald G 2010 Nano Lett. 10 2342Google Scholar

    [12]

    Claire M W, Liu X L, Willie J P 2012 Adv. Mater. 24 OP98

    [13]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano Lett. 12 6223Google Scholar

    [14]

    Anders P, Ole A, Ilya P R, Sergey I B 2013 Sci. Rep. 3 2155Google Scholar

    [15]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [16]

    Anders P, Michael G. N, René L E, Sergey I B 2013 Nano Lett. 13 829Google Scholar

    [17]

    Chen L, Wei M Y, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [18]

    Chen L, Xu N N, Leena S, Cui T J, Ranjan S, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [19]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024

    [20]

    Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B, Zhou L 2015 Phys. Rev. X 5 041027

    [21]

    Qu C, Ma S J, Hao J M, Qiu M, et al. 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [22]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [23]

    Cong L Q, Pitchappa P, Lee C K, Singh R 2017 Adv. Mater. 29 1700733Google Scholar

    [24]

    Chen L, Ge Y F, Zang X F, et al. 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [25]

    Yin S, Shi X T, Huang W, Zhang W T, Hu F R, Qin Z J, Xiong X M 2019 Electronics 8 1528Google Scholar

    [26]

    Li J S, Wu J F, Zhang L 2014 IEEE Photonics J. 6 2374591

    [27]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [28]

    Chen L, Cao Z Q, Shen Q S, Deng X X 2007 J. Lightwave Technol. 25 539Google Scholar

    [29]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [30]

    Chen L, Cao Z Q, Ou F, Li H G, Shen Q S, Qiao H C 2007 Opt. Lett. 32 1432Google Scholar

    [31]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [3] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] Song Ke-Chao, Huo Shuai-Nan, Tu Dong-Ming, Hou Xin-Fu, Wu Xiao-Jing, Wang Ming-Wei. Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus. Acta Physica Sinica, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [5] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [6] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [7] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [8] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [10] Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen. Optical modulation characteristics of all-dielectric grating at terahertz frequencies. Acta Physica Sinica, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [11] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [12] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [13] Deng Xin-Hua, Liu Jiang-Tao, Yuan Ji-Ren, Wang Tong-Biao. A new characteristics matrix method based on conductivity and its application in the optical properties of graphene in THz frequency range. Acta Physica Sinica, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [14] Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao. Tunable terahertz photonic crystal structures containing graphene. Acta Physica Sinica, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [15] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [16] Liang Mei-Yan, Zhang Cun-Lin. Improvement in the range resolution of THz radar using phase compensation algorithm. Acta Physica Sinica, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [17] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [20] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
Metrics
  • Abstract views:  6329
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2021
  • Accepted Date:  02 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回