Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of nonlinear phenomenon of NO ultraviolet broadband absorption spectroscopy

Xiong Feng Peng Zhi-Min Ding Yan-Jun Du Yan-Jun

Citation:

Experimental study of nonlinear phenomenon of NO ultraviolet broadband absorption spectroscopy

Xiong Feng, Peng Zhi-Min, Ding Yan-Jun, Du Yan-Jun
PDF
HTML
Get Citation
  • Ultraviolet broadband absorption spectroscopy (UV-BAS) has been widely used to measure the concentration of gas pollutant, such as NO. However, the nonlinear dependence of the absorbance on the optical thickness (XL) caused by the broadening effect of instrument function is observed. In this paper, the nonlinear behavior of NO absorbance is investigated both theoretically and experimentally, and a database using a polynomial to describe the nonlinearity is established to present a simple method of measuring NO concentration. First, the nonlinear relationship between absorbance and XL is deduced. Second, the nonlinearity of an isolated spectral line is simulated, and the dependence of nonlinear behavior on instrument width is investigated. Third, the nonlinerities of peak absorbance in γ (0, 0) band with different instrumental widths are calculated, the nonlinear expression is given in a polynomial form, and the corresponding coefficient database is established. In addition, the nonlinearities in different vibration bands with the same instrumental width are compared with each other. Finally, two spectrometers are used to measure NO absorption spectra in different instrumental widths in order to validate the above-mentioned results of theoretical analysis. The relative error between the measured peak absorbance and theoretical calculation is less than 4%, and that between experimental results and the interpolation polynomial results is less than 8%. The experimental results demonstrate the accuracy of theoretical calculation and the reliability of database.
      Corresponding author: Du Yan-Jun, YanjunDu@ncepu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB20060002) and the Huaneng Group Headquarters Science and Technology Project Basic Energy Science and Technology Research Special, China (Grant No. HNKJ20-H50).
    [1]

    Yan J, Wang G, Yang P, Li D, Bian J 2022 Sci. Total Environ. 817 152776Google Scholar

    [2]

    Liu Y, Tang G, Liu B, et al. 2022 Atmos. Environ. 275 119018Google Scholar

    [3]

    Breeze P 2017 Electricity Generation and the Environment (Academic Press) pp33–47

    [4]

    Abdul-Wahab S A, Azzi M, Johnson G M, et al. 2003 Process Saf. Environ. 81 363Google Scholar

    [5]

    Salome C M, Brown N J, Marks G B, et al. 1996 Eur. Respir. J. 9 910Google Scholar

    [6]

    Li H, Liu W, Kan R 2019 Rev. Sci. Instrum. 90 46103Google Scholar

    [7]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 230858Google Scholar

    [8]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [9]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [10]

    蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301Google Scholar

    Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M, 2014 Acta Phys. Sin. 63 083301Google Scholar

    [11]

    Kormann R, Fischer H, Gurk C, et al. 2002 Spectrochim Acta A Mol. Biomol. Spectrosc. 58 2489Google Scholar

    [12]

    Cui X, Dong F, Zhang Z, Sun P, Xia H, Fertein E, Chen W 2018 Atmos. Environ. 189 125Google Scholar

    [13]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [14]

    Magne L, Pasquiers S 2005 C. R. Phys. 6 908Google Scholar

    [15]

    Liao W, Hecobian A, Mastromarino J, Tan D 2006 Atmos. Environ. 40 17Google Scholar

    [16]

    Miyazaki K, Matsumoto J, Kato S, Kajii Y 2008 Atmos. Environ. 42 7812Google Scholar

    [17]

    崔执凤 陈 东 凤尔银 季学韩 陆同兴 李学初 2000 物理学报 49 2151Google Scholar

    Cui Z F, Chen D, Feng E Y, Ji X H, Lu T X, Li X C 2000 Acta Phys. Sin. 49 2151Google Scholar

    [18]

    Peng B, Zhou Y, Liu G, He Y, Gao C, Guo Y 2020 Spectrochi. Acta. A 233 118169Google Scholar

    [19]

    Wang L, Zhang Y, Zhou X, Qin F, Zhang Z 2017 Sens. Actuators B Chem. 241 146Google Scholar

    [20]

    Peng B, Gao C, Zhou Y, Guo Y 2020 Sens. Actuators B Chem. 312 127988Google Scholar

    [21]

    Yang X, Peng Z, Ding Y, Du Y 2021 Fuel 288 119666Google Scholar

    [22]

    Zhang Y G, Wang H S, Somesfalean G, Wang Z Y, Lou X T, Wu S H, Zhang Z G, Qin Y K 2010 Atmos. Environ. 44 4266Google Scholar

    [23]

    Li Y, Zhang X, Li X, et al. 2018 Appl. Spectrosc. 72 1244Google Scholar

    [24]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [25]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 物理学报 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [26]

    Buijs K, Maurice M J 1969 Anal. Chim. Acta 47 469Google Scholar

    [27]

    Donovan R J, Hussain D, Kirsch L J 1970 Trans. Faraday. Soc. 66 2551Google Scholar

    [28]

    Mellqvist J, Rosén A 1996 J. Quant. Spectrosc. Radiat. Transf 56 209Google Scholar

    [29]

    Trad H, Higelin P, Djebaı̈li-Chaumeix N, Mounaim-Rousselle C 2005 J. Quant. Spectrosc. Radiat. Transf. 90 275Google Scholar

    [30]

    Wong A, Yurchenko S N, Bernath P, et al. 2017 Mon. Not. R. Astron. Soc. 470 882Google Scholar

    [31]

    Luque J, Crosley D R LIFBASE: Database and Spectral Simulation Program (Version 1.5) 1999 SRI International Report MP 99 009

  • 图 1  UV-BAS测量系统示意图

    Figure 1.  Schematic of the experimental setup for UV-BAS measurements.

    图 2  单谱线峰值随光学厚度变化的非线性行为

    Figure 2.  Nonlinearity of single line peak with optical thickness

    图 3  单根谱线非线性度及其导数

    Figure 3.  Nonlinearity of single line and its derivative.

    图 4  γ (0, 0)带系吸收光谱 (a) 真实光谱; (b) 不同仪器展宽下的测量光谱

    Figure 4.  Absorption spectra of γ (0, 0): (a) True spectrum; (b) detect spectra in different instrument widths.

    图 5  不同仪器展宽下γ (0, 0)带系吸收率峰值非线性行为

    Figure 5.  Nonlinearity of the peak absorbance in γ (0, 0) in different instrument widths.

    图 6  A1, |A2|与非线性度随仪器展宽的变化规律

    Figure 6.  Dependence of A1, |A2|, and the relative nonlinearity on the instrumental width.

    图 7  NO不同振动谱带紫外吸收光谱

    Figure 7.  NO absorbption spectra in different vibration bands.

    图 8  (a) 不同谱带吸收率峰值非线性行为; (b) 等最大线强度各谱带峰值非线性行为

    Figure 8.  (a) Nonlinearity of peak absorbance in different bands; (b) nonlinearity of peak absorbance with the same maximum line strength in different bands.

    图 9  (a) 不同谱带吸收比例积分面积非线性行为; (b) 等最大线强度各谱带面积非线性行为

    Figure 9.  (a) Nonlinearity of absorption fraction the integral area in different bands; (b) nonlinearity of the integral area with the same maximum line strength in different bands.

    图 10  UV-BAS测量光谱强度与吸收率 (a), (b) BAS光谱强度; (c), (d) BAS测量吸收率

    Figure 10.  Spectrum intensities and absorbances measured by BAS: (a), (b) BAS spectrum intensity; (c), (d) BAS measures absorption

    图 11  吸收率峰值随光学厚度变化规律

    Figure 11.  Dependence of the peak absorbance on optical thickness.

    图 12  数据库系数插值多项式与实验结果对比

    Figure 12.  Comparison between interpolation polynomial and experimental result.

    图 13  吸收分数积分面积随光学厚度变化规律

    Figure 13.  Dependence of integral area of absorption fraction on optical thickness.

    表 1  NO非线性行为的多项式系数

    Table 1.  Polynomial coefficient for NO nonlinearity

    Δνin/nmA1/10–3A2/10–5A3/10–8
    0.0116.572–2.1201.499
    0.058.779–1.0410.846
    0.107.379–0.8900.689
    0.504.037–0.6200.493
    1.002.810–0.4290.341
    5.000.720–0.1300.107
    DownLoad: CSV

    表 A1  不同仪器展宽Δνin下多项式系数

    Table A1.  Polynomial coefficients in different Δνin.

    Δνin/nmA1/10–3A2/10–5A3/10–8
    0.01016.572–2.1201.499
    0.01513.854–2.1701.728
    0.02011.977–1.9121.646
    0.02510.828–1.6241.460
    0.03010.087–1.3741.208
    0.0359.619–1.2291.046
    0.0409.281–1.1430.952
    0.0459.010–1.0840.891
    0.0508.779–1.0410.846
    0.0558.576–1.0080.812
    0.0608.395–0.9820.785
    0.0658.231–0.9620.763
    0.0708.081–0.9450.745
    0.0757.943–0.9320.731
    0.0807.815–0.9210.719
    0.0857.696–0.9110.709
    0.0907.584–0.9030.702
    0.0957.479–0.8960.695
    0.107.379–0.8900.689
    0.156.596–0.8490.653
    0.206.038–0.8180.631
    0.255.577–0.7860.609
    0.305.178–0.7530.587
    0.354.829–0.7180.564
    0.404.526–0.6830.540
    0.454.264–0.6500.516
    0.504.037–0.6200.493
    0.553.842–0.5910.472
    0.603.673–0.5660.452
    0.653.525–0.5420.433
    0.703.395–0.5210.416
    0.753.278–0.5010.400
    0.803.171–0.4840.386
    0.853.073–0.4680.373
    0.902.981–0.4540.362
    0.952.893–0.4410.351
    1.02.810–0.4290.341
    1.22.510–0.3890.309
    1.42.256–0.3550.283
    1.62.039–0.3270.261
    1.81.855–0.3020.242
    2.01.698–0.2800.225
    2.51.394–0.2370.192
    3.01.178–0.2040.166
    3.51.018–0.1790.146
    4.00.895–0.1590.131
    4.50.798–0.1430.118
    5.00.720–0.1300.107
    DownLoad: CSV
  • [1]

    Yan J, Wang G, Yang P, Li D, Bian J 2022 Sci. Total Environ. 817 152776Google Scholar

    [2]

    Liu Y, Tang G, Liu B, et al. 2022 Atmos. Environ. 275 119018Google Scholar

    [3]

    Breeze P 2017 Electricity Generation and the Environment (Academic Press) pp33–47

    [4]

    Abdul-Wahab S A, Azzi M, Johnson G M, et al. 2003 Process Saf. Environ. 81 363Google Scholar

    [5]

    Salome C M, Brown N J, Marks G B, et al. 1996 Eur. Respir. J. 9 910Google Scholar

    [6]

    Li H, Liu W, Kan R 2019 Rev. Sci. Instrum. 90 46103Google Scholar

    [7]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 230858Google Scholar

    [8]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [9]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [10]

    蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301Google Scholar

    Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M, 2014 Acta Phys. Sin. 63 083301Google Scholar

    [11]

    Kormann R, Fischer H, Gurk C, et al. 2002 Spectrochim Acta A Mol. Biomol. Spectrosc. 58 2489Google Scholar

    [12]

    Cui X, Dong F, Zhang Z, Sun P, Xia H, Fertein E, Chen W 2018 Atmos. Environ. 189 125Google Scholar

    [13]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [14]

    Magne L, Pasquiers S 2005 C. R. Phys. 6 908Google Scholar

    [15]

    Liao W, Hecobian A, Mastromarino J, Tan D 2006 Atmos. Environ. 40 17Google Scholar

    [16]

    Miyazaki K, Matsumoto J, Kato S, Kajii Y 2008 Atmos. Environ. 42 7812Google Scholar

    [17]

    崔执凤 陈 东 凤尔银 季学韩 陆同兴 李学初 2000 物理学报 49 2151Google Scholar

    Cui Z F, Chen D, Feng E Y, Ji X H, Lu T X, Li X C 2000 Acta Phys. Sin. 49 2151Google Scholar

    [18]

    Peng B, Zhou Y, Liu G, He Y, Gao C, Guo Y 2020 Spectrochi. Acta. A 233 118169Google Scholar

    [19]

    Wang L, Zhang Y, Zhou X, Qin F, Zhang Z 2017 Sens. Actuators B Chem. 241 146Google Scholar

    [20]

    Peng B, Gao C, Zhou Y, Guo Y 2020 Sens. Actuators B Chem. 312 127988Google Scholar

    [21]

    Yang X, Peng Z, Ding Y, Du Y 2021 Fuel 288 119666Google Scholar

    [22]

    Zhang Y G, Wang H S, Somesfalean G, Wang Z Y, Lou X T, Wu S H, Zhang Z G, Qin Y K 2010 Atmos. Environ. 44 4266Google Scholar

    [23]

    Li Y, Zhang X, Li X, et al. 2018 Appl. Spectrosc. 72 1244Google Scholar

    [24]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [25]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 物理学报 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [26]

    Buijs K, Maurice M J 1969 Anal. Chim. Acta 47 469Google Scholar

    [27]

    Donovan R J, Hussain D, Kirsch L J 1970 Trans. Faraday. Soc. 66 2551Google Scholar

    [28]

    Mellqvist J, Rosén A 1996 J. Quant. Spectrosc. Radiat. Transf 56 209Google Scholar

    [29]

    Trad H, Higelin P, Djebaı̈li-Chaumeix N, Mounaim-Rousselle C 2005 J. Quant. Spectrosc. Radiat. Transf. 90 275Google Scholar

    [30]

    Wong A, Yurchenko S N, Bernath P, et al. 2017 Mon. Not. R. Astron. Soc. 470 882Google Scholar

    [31]

    Luque J, Crosley D R LIFBASE: Database and Spectral Simulation Program (Version 1.5) 1999 SRI International Report MP 99 009

Metrics
  • Abstract views:  6099
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2022
  • Accepted Date:  21 June 2022
  • Available Online:  09 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回