Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2-broadened coefficients of water vapor molecule in 1.1 μm band

Yang Tao Qian Xian-Mei Ma Hong-Liang Liu Qiang Zhu Wen-Yue Zheng Jian-Jie Chen Jie Xu Qiu-Yi

Citation:

CO2-broadened coefficients of water vapor molecule in 1.1 μm band

Yang Tao, Qian Xian-Mei, Ma Hong-Liang, Liu Qiang, Zhu Wen-Yue, Zheng Jian-Jie, Chen Jie, Xu Qiu-Yi
PDF
HTML
Get Citation
  • The absorption spectral parameters of water vapor molecules are the key basic scientific data for the remote sensing detection and the planetary observation applications. Based on a narrow line-width external cavity diode laser and a long-path absorption cell, 18 absorption spectral lines of CO2-broadened water vapor molecules in a 9332–9722 cm–1 range at room temperature are measured. To obtain the CO2-broadened water vapor molecule coefficients, the Voigt profile and the quadratic speed-dependent Voigt profile are used to fit the absorption spectrum data. The quadratic speed-dependent Voigt profile shows better fitting capability. Comparing with the air-broadened coefficients of the corresponding region from the HITRAN2020 database, the mean ratios of the CO2-broadened coefficients of water vapor molecules and the air-broadened coefficients obtained from the two models of the line shape are 1.327 and 1.454, respectively, which verifies that the method of estimating the CO2-broadened coefficient by the air-broadened coefficient of water vapor molecules has certain reliability. This study can provide reference data of measured spectral parameters for the detection technology and related research of atmospheric structures of Mars and Venus in the near-infrared region.
      Corresponding author: Liu Qiang, liuq@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41805014), the Foundation of Key Laboratory of Science and Technology Innovation of Chinese Academy of Sciences (Grant No. CXJJ-21S028), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010104), the National Defense Basic Scientific Research Program of Bureau of Science, Technology and Industry of China (Grant No. JCKY2019130D021), the Key Program of the Youth Talent Support Plan in Universities of Anhui Province, China (Grant No. gxyqZD2020032), and the Open Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences (Grant No. JJ-19-01).
    [1]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119

    [2]

    Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148

    [3]

    郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar

    Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar

    [4]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663

    [5]

    Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205

    [6]

    Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar

    [7]

    Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57

    [8]

    Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027

    [9]

    高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar

    Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar

    [10]

    Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364

    [11]

    Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar

    [12]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar

    [13]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar

    [14]

    Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar

    [15]

    Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar

    [16]

    Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar

    [17]

    Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173

    [18]

    Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar

    [19]

    Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar

    [21]

    Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar

  • 图 1  水分子吸收光谱实验装置

    Figure 1.  The experimental setup of water vapor absorption spectrum.

    图 2  吸收信号对比 (a) 光束4引入前获得的水分子吸收信号; (b) 光束4引入后获得的水分子吸收信号; (c) F-P 标准具纵模信号

    Figure 2.  Comparison of acquired signals: (a) Water vapor absorption signals before beam 4 introduced; (b) water vapor absorption signals after beam 4 introduced; (c) the longitudinal mode signals of F-P etalon.

    图 3  (a) 9412.790 cm–1处, 不同压力下的测量点及拟合结果; (b) 使用voigt线型拟合吸收光谱得到的残差; (c) 使用qSDV线型拟合吸收光谱得到的残差

    Figure 3.  (a) Measurement points and fitting results at 9412.790 cm–1 under different pressures; (b) residuals obtained by fitting absorption spectra using Voigt profile; (c) residuals obtained by fitting the absorption spectrum using the qSDV profile.

    图 4  Voigt线型(a)和qSDV线型(b)拟合后, 不同气压下的碰撞展宽值(1 atm = 1.01 × 105 Pa)

    Figure 4.  Collision line width under different pressures obtained by Voigt profile (a) and qSDV profile (b) (1 atm = 1.01 × 105 Pa).

    图 5  使用Voigt线型(a)和qSDV线型(b)得到的水分子的CO2加宽系数与HITRAN2020数据库中水分子的空气加宽系数之比; (c) 使用Voigt线型得到的水分子的CO2加宽系数与使用qSDV线型得到的水分子的CO2加宽系数之比

    Figure 5.  The ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile (a) and the qSDV profile (b) to the air broadening coefficients of water vapor in the HITRAN2020 database; (c) the ratios of CO2-broadened coefficients of water vapor obtained by using the Voigt profile to the coefficients obtained by using the qSDV profile.

    表 1  CO2压力加宽的水分子谱线加宽参数(括号内数字为拟合误差)

    Table 1.  Line parameters of water vapor broadened by the pressure of carbon dioxide (Numbers in brackets are fitting errors)

    线位置
    $ {\nu }_{0}/{\rm cm}^{-1}$
    CO2加宽系数$/({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$空气加宽系数/
    $({\mathrm{c}\mathrm{m} }^{-1}{\cdot}{\mathrm{a}\mathrm{t}\mathrm{m} }^{-1})$
    比值
    VPqSDVP$ {\gamma }_{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N}}^{\mathrm{A}\mathrm{I}\mathrm{R}} $$\dfrac{{\gamma }_{1}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$$\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{\gamma _{\mathrm{H}\mathrm{I}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N} }^{\mathrm{A}\mathrm{I}\mathrm{R} }}\Big/{\text{%} }$$\dfrac{{\gamma }_{0}^{ {\mathrm{C}\mathrm{O} }_{2} }}{{\gamma }_{\mathrm{V}\mathrm{P} }^{ {\mathrm{C}\mathrm{O} }_{2} }}\Big/{\text{%} }$
    $ {\gamma }_{1}^{{\mathrm{C}\mathrm{O}}_{2}} $$ {\gamma }_{0}^{{\mathrm{C}\mathrm{O}}_{2}} $$ {\gamma }_{2}^{{\mathrm{C}\mathrm{O}}_{2}} $
    9332.6230.079(0.42)0.093(1.86)0.020(6.8)0.04831.6321.9171.175
    9335.6910.107(0.58)0.111(2.76)0.013(18.7)0.07721.3911.4411.036
    9339.7090.083(0.74)0.100(4.95)0.007(20.0)0.07321.1351.3611.199
    9344.2630.084(0.69)0.097(2.51)0.016(7.07)0.05731.4681.6851.148
    9346.9120.095(0.66)0.102(1.61)0.026(6.92)0.07621.2471.3411.076
    9351.1490.072(0.18)0.079(1.37)0.005(9.63)0.06231.1531.2741.105
    9351.5090.082(1.14)0.092(4.00)0.004(12.05)0.08041.0141.1501.134
    9366.5910.084(0.18)0.085(1.27)0.018(17.27)0.06021.3941.4181.017
    9366.7810.082(0.40)0.089(2.40)0.089(2.40)0.05651.4511.5681.081
    9388.7510.085(0.96)0.094(2.58)0.015(9.77)0.06371.3281.4721.108
    9388.9680.096(0.56)0.102(3.35)0.069(18.15)0.07911.2121.2941.067
    9409.1300.086(0.41)0.089(1.92)0.010(12.02)0.07131.2051.2451.034
    9412.7900.122(1.30)0.133(3.37)0.019(6.05)0.08171.4891.6251.092
    9676.8810.068(0.32)0.073(1.60)0.016(11.04)0.04731.4461.5521.073
    9694.8110.083(0.28)0.098(2.41)0.031(9.83)0.06281.3231.5601.180
    9713.9590.094(0.69)0.099(2.72)0.024(11.35)0.07261.2941.3701.059
    9720.2770.114(0.51)0.118(3.86)0.027(7.39)0.08311.3671.4211.040
    9721.8060.094(0.20)0.104(1.15)0.024(8.58)0.07041.3381.4771.104
    DownLoad: CSV
  • [1]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Heyden P V 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119

    [2]

    Antony B K, Neshyba S, Gamache R R 2007 J. Quant. Spectrosc. Radiat. Transfer 1 148

    [3]

    郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬 2021 物理学报 70 163301Google Scholar

    Zheng J J, Zhu W Y, Liu Q, Ma H L, Liu K, Qian X M, Chen J, Yang T 2021 Acta Phys. Sin. 70 163301Google Scholar

    [4]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Electron. 36 663

    [5]

    Jacquemart D, Gamache R, Rothman L S 2004 J. Quant. Spectrosc. Radiat. Transfer 96 205

    [6]

    Sironneau V T, Hodges J T 2015 J. Quant. Spectrosc. Radiat. Transfer 152 1Google Scholar

    [7]

    Brown L R, Toth R A, Dulick M 2002 J. Quant. Spectrosc. Radiat. Transfer 212 57

    [8]

    Sagawa H, Mendrok J, Seta T, Hoshina H, Baron P, Suzuki K, Hosako I, Otani C, Hartogh P, Kasai Y 2009 J. Quant. Spectrosc. Radiat. Transfer 18 2027

    [9]

    高晓明, 黄伟, 邓伦华, 邵杰, 樊宏, 曹振松, 袁怿谦, 张为俊, 龚知本 2006 光学学报 26 5Google Scholar

    Gao X M, Huang W, Deng L H, Shao J, Fan H, Cao Z S, Yuan Y Q, Zhang W J, Gong Z B 2006 Acta Opt. Sin. 26 5Google Scholar

    [10]

    Chamberlain S, Bailey J, Crisp D, Meadows V 2013 Icarus 1 364

    [11]

    Brown L R, Humphrey C M, Gamache R R 2007 J. Mol. Spectrosc. 246 1Google Scholar

    [12]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 187 472Google Scholar

    [13]

    Devi V M, Benner D C, Sung K, Crawford T J, Gamache R R, Renaud C L, Smith M A H, Mantz A W, Villanueva G L 2017 J. Quant. Spectrosc. Radiat. Transfer 203 158Google Scholar

    [14]

    Borkov Y, Petrova T M, Solodov A M, Solodov A A 2018 J. Mol. Spectrosc. 344 39Google Scholar

    [15]

    Lu Y, Li X F, Liu A W, Hu S M 2014 Chin. J. Chem. Phys. 27 1Google Scholar

    [16]

    Régalia L, Cousin E, Gamache R R, Vispoel B, Robert S, Thomas X 2019 J. Quant. Spectrosc. Radiat. Transfer 231 126Google Scholar

    [17]

    Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O 2011 Icarus 1 173

    [18]

    Zheng J, Ma H, Liu Q, Qian X, Zhu W, Cao Z, Chen J, Yang T, Xu Q 2022 Microwave Opt. Technol. Lett.Google Scholar

    [19]

    Gordon I E, Rothman L S, hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Howard J N, Burch D E, Williams D 1956 J. Opt. Soc. Am. 46 242Google Scholar

    [21]

    Pollack J B, Dalton J, Grinspoon D, et al. 1993 Icarus 103 1Google Scholar

  • [1] Wang Ya-Min, Wu Hao-Long, Tao Meng-Meng, Li Guo-Hua, Wang Sheng, Ye Jing-Feng. Hyperspectral absorption of CO in the near infrared band at room temperature. Acta Physica Sinica, 2023, 72(22): 224207. doi: 10.7498/aps.72.20230557
    [2] Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song. Theoretical studies on molecular conformers and infrared spectra of triethylamine. Acta Physica Sinica, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [3] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [4] Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Wang Yu-Hao, Xu Han-Yang, Liu Wen-Qing. Calibration method of instrument line shape for infrared radiometer. Acta Physica Sinica, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [5] Zheng Jian-Jie, Zhu Wen-Yue, Liu Qiang, Ma Hong-Liang, Liu Kun, Qian Xian-Mei, Chen Jie, Yang Tao. Study on dual-optical paths for simultaneous measurement method of water vapor absorption spectrum in 1 μm band. Acta Physica Sinica, 2021, 70(16): 163301. doi: 10.7498/aps.70.20210100
    [6] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [7] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [10] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [11] Wang Zhi-Ping, Wu Ya-Min, Lu Chao, Zhang Xiu-Mei, He Yue-Juan. Irradiation of the water molecule by the femtosecond laser field. Acta Physica Sinica, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [12] Song Zhi-Ming, Zhao Dong-Xu, Guo Zhen, Li Bin-Hui, Zhang Zhen-Zhong, Shen De-Zhen. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors. Acta Physica Sinica, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [13] Chen Ming, Min Rui, Zhou Jun-Ming, Hu Hao, Lin Bo, Miao Ling, Jiang Jian-Jun. Molecular dynamic simulation of water molecules in carbon nanocapsule. Acta Physica Sinica, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [14] Chen Hong-Shan, Meng Fan-Shun, Li Xiang-Fu, Zhang Su-Ling. Theoretical study of the adsorption of water molecule on (TiO2)n(n=3—6) clusters. Acta Physica Sinica, 2009, 58(2): 887-892. doi: 10.7498/aps.58.887
    [15] Zhou Yan-Hong, Xu Ying, Zheng Xiao-Hong. First principles study on the effects of the H2O molecules on the transport properties of a carbon wire. Acta Physica Sinica, 2007, 56(2): 1093-1098. doi: 10.7498/aps.56.1093
    [16] Liu Ying, Peng Chang-De, Lan Xiu-Feng, Luo Xiao-Sen, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Fluorescence spectrum characteristics of ethanol-water clusters. Acta Physica Sinica, 2005, 54(11): 5455-5461. doi: 10.7498/aps.54.5455
    [17] Zhang Jia-Liang, Liu Li-Ying, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(5): 1026-1030. doi: 10.7498/aps.51.1026
    [18] GAO HUI, LIU YU-YAN, LIN JIE-LI, SHI JIN, XIONG GUI-GUANG, ZHANG ZHE-HUA, TIAN DE-CHENG. ON THE LINE SHAPE OF VELOCITY MODULATION LASER SPECTROSCOPY. Acta Physica Sinica, 2001, 50(8): 1463-1466. doi: 10.7498/aps.50.1463
    [19] MAO NIAN-XIN, HUANG YE-XIAO, LU WEI, YE HONG-JUAN, SHEN XUE-CHU, HU ZHI-HONG, LUO AN-XIANG. FAR-INFRARED SPECTRA OF NATURALLY OCCURRING FeS2(Pyrite). Acta Physica Sinica, 1993, 42(10): 1712-1718. doi: 10.7498/aps.42.1712
    [20] BI ZHI-YI, DING LIANG-EN, MA LONG-SHENG. THEORETICAL CALCULATION FOR MODULATION TRANSFER SPECTROSCOPY. Acta Physica Sinica, 1993, 42(4): 582-591. doi: 10.7498/aps.42.582
Metrics
  • Abstract views:  3851
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2022
  • Accepted Date:  06 June 2022
  • Available Online:  14 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回