-
Based on the gas multi-pass absorption cell with dual-optical paths (long optical path: 72.46 m; short optical path: 36.23 m), a measurement method of simultaneously detecting water vapor absorption spectra is advanced. Combining with a narrow line-width external cavity diode laser and a high-precision Fabry-Perot etalon, a high-resolution simultaneous measurement device with dual-optical paths for water vapor absorption spectra in 1 μm band is developed. Since the external cavity diode laser has excellent polarization characteristics which could be combined with a half-wave plate and a polarization beam splitter to implement the laser transmissions in dual-optical paths simultaneously. Both the multi-pass absorption cell and the Fabry-Perot etalon in the measurement device have pressure and temperature control units, which are utilized for achieving ambient stability. The free spectral range of Fabry-Perot etalon is accurately measured by the method of optical comb frequency. Corresponding free spectral range with a deviation of only 0.02 % from the theoretical value is obtained to be a value of 749.52 MHz, and the influence of temperature on the frequency shift of etalon is less than 1 % of the measured value. The stability of the pressure and the temperature in the dual-optical path gas multi-pass absorption cell in the system are evaluated in detail, and the calculated relative errors are not more than 0.03 % and 0.02 %, respectively. At a temperature of 300 K, the system is used to measure the absorption spectra of water vapor at 9152.53 cm–1 from 400 Pa to 2000 Pa on dual-optical paths, then the integrated absorbance and Lorentzian line-width of water vapor for long optical path and short optical path are inverted by fitting absorption spectra with Voigt profile respectively. The absorption line intensities and self-broadening coefficients are acquired by performing linear fitting to the integrated absorbance and Lorentzian line-width under different pressures. And the relative deviations of the average values of the dual-optical path absorption line intensities (converted to the reference temperature of 296 K) and the self-broadening coefficients and the corresponding data of the HITRAN2016 database are 0.78 % and 3.8 %, respectively. Consequently, the feasibility of the dual-optical path simultaneous measurement method and the reliability of the measurement device are demonstrated by the results.
-
Keywords:
- dual-optical paths /
- near infrared spectrum /
- line intensities /
- self-broadening coefficients
[1] 马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar
Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar
[2] Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar
[3] Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar
[4] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)
[5] 朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar
Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar
[6] 朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar
Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar
[7] Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar
[8] Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar
[9] Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar
[10] Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar
[11] Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar
[12] Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar
[13] Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar
[14] Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar
[15] Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar
[16] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[17] Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar
[18] Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar
[19] 鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar
Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar
[20] 孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar
Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar
[21] 闫露露 2014硕士学位论文(西安: 陕西科技大学)
Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)
[22] 杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224
Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224
[23] Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar
[24] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
-
图 7 (a), (b)在长光程中9152.53 cm–1处纯水分子的吸收系数和拟合残差; (c), (d)在短光程中纯水分子在相同光谱线位置的吸收系数和拟合残差
Figure 7. (a), (b) Absorption coefficient and fitting residual of water vapor at 9152.53 cm–1 in long optical path; (c), (d) absorption coefficients and fitting residuals of pure water vapor at the same spectral line position in a short optical path.
图 8 温度300 K时, 水分子在9152.53 cm–1处单位距离上的积分吸光度与粒子数浓度的线性拟合结果及其拟合残差(左上角小图显示了3.626 × 1017 molecule·cm–3下5组单位距离上积分吸光度平均后的标准差. 因标准差过小, 主图上未完全显示)
Figure 8. At a temperature of 300 K, the linear fitting results and fitting residual errors of the integrated absorbance per unit distance of water vapor at 9152.53 cm–1 against the particle number concentration. (The minor image in the upper left corner shows the average standard deviation of the integrated absorbance of the 5 groups of unit distances under 3.626 × 1017 molecule·cm–3. However, the standard deviation is so small that it is not fully displayed on the main image)
表 1 296 K温度下9153 cm–1处各参数与其对线强不确定度的贡献
Table 1. Parameters at 9153 cm–1 and their contribution to the uncertainty of line intensityat 296 K.
参数 参数值 相对不确
定度/%对线强不确定度的贡献/% Afit 0.01126542 cm–1 0.014 99.9746 kw 1 0.72 0.0127 T 300 K 0.017 ~0 KT 1.01139 0.028 — V 2.6 L 0 0 P 397.3 Pa 0.025 ~0 L 7246 cm 0.13 ~0 qleak 4.54 × 10–4 Pa·L·s–1 0.003 ~0 riso 0.9973 0.01 0.0127 S 1.6435 × 10–23 cm·molecule–1 0.74 -
[1] 马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar
Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar
[2] Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar
[3] Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar
[4] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)
[5] 朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar
Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar
[6] 朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar
Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar
[7] Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar
[8] Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar
[9] Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar
[10] Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar
[11] Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar
[12] Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar
[13] Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar
[14] Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar
[15] Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar
[16] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[17] Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar
[18] Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar
[19] 鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar
Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar
[20] 孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar
Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar
[21] 闫露露 2014硕士学位论文(西安: 陕西科技大学)
Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)
[22] 杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224
Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224
[23] Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar
[24] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
Catalog
Metrics
- Abstract views: 6440
- PDF Downloads: 111
- Cited By: 0