-
Asymmetric spatial heterodyne spectroscopy is a new ultra-high resolution remote sensing detection technology. Based on its features of large luminous flux, small size, and high precision, it is very suitable for high-precision detection in a deep-space environment. Because of its high sensitivity, various details may interfere with the measurement results in experiment. In this paper, from the perspective of experimental condition, considering the influences of factors such as fringe center position offset, uneven illumination, and Gaussian noise, a compound optical path difference phase-shift solution method is proposed. The simulation calculation and data analysis show that the offset of the nominal point relative to the center position will significantly affect the systematic error of spectral velocity measurement. And the compound optical path difference phase-shift solution method can smooth the environmental noise and random interference to a certain extent. For the interference fringe image with 1% Gaussian noise, the velocity measurement error can be controlled within 5‰ by using the compound optical path difference phase-shift solution method, which makes the asymmetric spatial heterodyne spectroscopy technology more suitable for space optoelectronic precision measurement.
-
Keywords:
- Doppler asymmetric spatial heterodyne spectral velocimetry /
- deep space exploration /
- compound optical path difference phase-shift solution method /
- nominal point deviation
[1] 薛喜平, 张洪波, 孔德庆 2017 天文研究与技术 14 382Google Scholar
Xue X P, Zhang H B, Kong D Q 2017 ART 14 382Google Scholar
[2] 张伟 2018 飞控与探测 1 41Google Scholar
Zhang W 2018 Flight Control Detect. 1 41Google Scholar
[3] Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Atmospheric Optical Modeling, Measurement and Simulation II San Diego, US, August 15–16, 2006 p63030T
[4] Englert C R, Babcock D D, Harlander J M 2007 Appl. Opt. 46 7297Google Scholar
[5] Harlander J M, Englert C R, Babcock D D, Roesler F L 2010 Opt. Express 18 26430Google Scholar
[6] Englert C R, Harlander J M, Emmert J T, Babcock D D, Roesler F L 2010 Opt. Express 18 27416Google Scholar
[7] Solheim B, Brown S, Sioris C, Shepherd G 2015 Atmos. Ocean 53 50Google Scholar
[8] 姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 1Google Scholar
Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photon. Sin. 47 1Google Scholar
[9] 李志伟, 熊伟, 施海亮, 罗海燕, 乔延利 2016 光谱学与光谱分析 36 2291Google Scholar
Li Z W, Xiong W, Shi H L, Luo H Y, Qiao Y L 2016 Spectrosc. Spect. Anal. 36 2291Google Scholar
[10] 况银丽, 方亮, 彭翔, 程欣, 张辉, 刘恩海 2018 物理学报 67 140703Google Scholar
Kuang Y L, Fang L, Peng X, Cheng X, Zhang H, Liu E H 2018 Acta Phys. Sin. 67 140703Google Scholar
[11] Harlander J M, Englert C R, Marr K D, Harding B, Chu K 2019 Appl. Opt. 58 3606Google Scholar
[12] Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 298Google Scholar
[13] 彭翔, 张嵬 2017 光子学报 46 1Google Scholar
Peng X, Zhang W 2017 Acta Photon. Sin. 46 1Google Scholar
[14] 王新强, 熊伟, 叶松, 张丽娟 2013 应用光学 34 79Google Scholar
Wang X Q, Xiong W, Ye S, Zhang L J 2013 J. Appl. Opt. 34 79Google Scholar
-
表 1 仿真计算所得速度值及误差
Table 1. Speed value and error calculated by simulation
v0/(m·s–1) v1/(m·s–1) v2/(m·s–1) $ \Delta {v_1} $/(m·s–1) $ \Delta {v_2} $/(m·s–1) 10000.0 9991.3 10000.8 8.7 0.8 表 2 不同算法及处理方法对干涉图解算所得速度值的对比
Table 2. Comparison of velocity values calculated on interferograms by different algorithms and processing methods.
v0/(m·s–1) DFT AFT v1/(m·s–1) v2/(m·s–1) v1/(m·s–1) v2/(m·s–1) Mean 10000.0 13989.4 9370.3 10003.8 10001.9 Std 0 516.0 212.6 225.8 185.9 -
[1] 薛喜平, 张洪波, 孔德庆 2017 天文研究与技术 14 382Google Scholar
Xue X P, Zhang H B, Kong D Q 2017 ART 14 382Google Scholar
[2] 张伟 2018 飞控与探测 1 41Google Scholar
Zhang W 2018 Flight Control Detect. 1 41Google Scholar
[3] Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Atmospheric Optical Modeling, Measurement and Simulation II San Diego, US, August 15–16, 2006 p63030T
[4] Englert C R, Babcock D D, Harlander J M 2007 Appl. Opt. 46 7297Google Scholar
[5] Harlander J M, Englert C R, Babcock D D, Roesler F L 2010 Opt. Express 18 26430Google Scholar
[6] Englert C R, Harlander J M, Emmert J T, Babcock D D, Roesler F L 2010 Opt. Express 18 27416Google Scholar
[7] Solheim B, Brown S, Sioris C, Shepherd G 2015 Atmos. Ocean 53 50Google Scholar
[8] 姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 1Google Scholar
Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photon. Sin. 47 1Google Scholar
[9] 李志伟, 熊伟, 施海亮, 罗海燕, 乔延利 2016 光谱学与光谱分析 36 2291Google Scholar
Li Z W, Xiong W, Shi H L, Luo H Y, Qiao Y L 2016 Spectrosc. Spect. Anal. 36 2291Google Scholar
[10] 况银丽, 方亮, 彭翔, 程欣, 张辉, 刘恩海 2018 物理学报 67 140703Google Scholar
Kuang Y L, Fang L, Peng X, Cheng X, Zhang H, Liu E H 2018 Acta Phys. Sin. 67 140703Google Scholar
[11] Harlander J M, Englert C R, Marr K D, Harding B, Chu K 2019 Appl. Opt. 58 3606Google Scholar
[12] Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 298Google Scholar
[13] 彭翔, 张嵬 2017 光子学报 46 1Google Scholar
Peng X, Zhang W 2017 Acta Photon. Sin. 46 1Google Scholar
[14] 王新强, 熊伟, 叶松, 张丽娟 2013 应用光学 34 79Google Scholar
Wang X Q, Xiong W, Ye S, Zhang L J 2013 J. Appl. Opt. 34 79Google Scholar
Catalog
Metrics
- Abstract views: 3893
- PDF Downloads: 64
- Cited By: 0