搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空时非对称分数阶类Langevin棘齿

周兴旺 林丽烽 马洪 罗懋康

引用本文:
Citation:

空时非对称分数阶类Langevin棘齿

周兴旺, 林丽烽, 马洪, 罗懋康

Spatiotemporally asymmetric fractionalLangevin-like ratchet

Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang
PDF
导出引用
  • 研究了空时非对称分数阶类Langevin分子马达棘齿模型,其中势函数是空间对称破缺的周期势,时间非对称类Langevin噪声由Logistic映射生成,而分数阶则刻画了分子马达工作环境的非理想程度. 通过将模型转化为离散映射,即研究其整时间点情形,数值模拟了噪声的时间非对称性、势函数的空间非对称性以及分数阶对模型定向输运行为的影响. 数值模拟结果表明:噪声的时间非对称性是定向流产生的根源,而势函数的空间非对称性能够与其进行竞争与协作,并在适当的参数条件下导致定向流的逆转;分数阶仅影响定向流的大小而不改变其方向. 与经典的整数阶分子马达模型或时间非对称分数阶分子马达棘齿模型相比,该模型可以更为真实地描述分子马达的噪声整流工作机理.
    In this paper, a spatiotemporally asymmetric fractional Langevin-like ratchet is constructed for the operation of a one-dimensional linear molecular motor subjected to both temporally asymmetric unbiased Langevin-like noise generated by the Logistic mapping and spatially asymmetric periodic potential. In this ratchet, the Langevin-like noise is used to describe fluctuations of intracellular surrounding, and the fractional order is responsible for the effect of the non-ideal intracellular surrounding. Then, by deducing the corresponding discrete mapping, dependance of ratchet effect on parameters are numerically investigated. Numerical results show that both the temporal asymmetry of noise and the spatial asymmetry of potential are crucial to the directed-transport of the ratchet, and competitive spatially asymmetric potential can even reverse the unidirected transport generated by the temporally asymmetric noise at suitable parameters.
    • 基金项目: 国家自然科学基金(批准号:11171238)和福建农林大学青年教师基金(批准号:2011XJJ23)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238) and the Young Teacher Foundation of Fujian Agriculture and Forestry University, China (Grant No. 2011XJJ23).
    [1]

    National Research Council (translated by Wang J F) 2013 A New Biology for the 21st Century (Beijing: Science Press) (in Chinese) [美国科学院研究理事会 (王菊芳译) 2013 二十一世纪新生物学 (北京: 科学出版社)]

    [2]

    Phillips R, Kondev J, Theriot J (translated by Tu Z C, Wang B L) 2012 Physical Biology of the Cell (Beijing: Science Press) p483 (in Chinese) [菲利普斯R, 康德夫J, 塞里奥特J著 (涂展春, 王伯林译) 2012 细胞的物理生物学 (北京: 科学出版社) 第483页]

    [3]

    Qian J, Xie P, Xue X G, Wang P Y 2009 Chin. Phys. B 18 4852

    [4]

    Li F Z, Jiang L C 2010 Chin. Phys. B 19 020503

    [5]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [6]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [7]

    Ellis R J, Minton A P 2003 Nature 425 27

    [8]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press) p442

    [9]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [10]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [11]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [12]

    Bao J D 2012 An Introduction to Anomalous Statistical Dynamics (Beijing: Science Press) p183 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第183页

    [13]

    Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (London: Imperial College Press) p57

    [14]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) pp78-81

    [15]

    Lasota A, Mackey M 1994 Chaos Fractals and Noise: Stochastic Aspects of Dynamics (New York: Springer-Verlag) p8

    [16]

    Chew L Y, Ting C 2002 Physica A 307 275

    [17]

    Chialvo D R, Dykman M I, Millonas M M 1997 Phys. Rev. Lett. 78 1605

    [18]

    Chew L Y, Ting C 2004 Phys. Rev. E 69 031103

    [19]

    Chew L Y, Ting C, Lai C H 2005 Phys. Rev. E 72 036222

    [20]

    Chew L Y 2012 Phys. Rev. E 85 016212.

    [21]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [22]

    Lipowsky R, Klumpp S 2005 Physica A 352 53

    [23]

    Vale R D 2003 Cell 112 467

    [24]

    Klibas A A, Srivastava H M, Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier) p199

    [25]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative System (Beijing: Science Press) p13 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第13页]

  • [1]

    National Research Council (translated by Wang J F) 2013 A New Biology for the 21st Century (Beijing: Science Press) (in Chinese) [美国科学院研究理事会 (王菊芳译) 2013 二十一世纪新生物学 (北京: 科学出版社)]

    [2]

    Phillips R, Kondev J, Theriot J (translated by Tu Z C, Wang B L) 2012 Physical Biology of the Cell (Beijing: Science Press) p483 (in Chinese) [菲利普斯R, 康德夫J, 塞里奥特J著 (涂展春, 王伯林译) 2012 细胞的物理生物学 (北京: 科学出版社) 第483页]

    [3]

    Qian J, Xie P, Xue X G, Wang P Y 2009 Chin. Phys. B 18 4852

    [4]

    Li F Z, Jiang L C 2010 Chin. Phys. B 19 020503

    [5]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [6]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [7]

    Ellis R J, Minton A P 2003 Nature 425 27

    [8]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press) p442

    [9]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [10]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [11]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [12]

    Bao J D 2012 An Introduction to Anomalous Statistical Dynamics (Beijing: Science Press) p183 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第183页

    [13]

    Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (London: Imperial College Press) p57

    [14]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) pp78-81

    [15]

    Lasota A, Mackey M 1994 Chaos Fractals and Noise: Stochastic Aspects of Dynamics (New York: Springer-Verlag) p8

    [16]

    Chew L Y, Ting C 2002 Physica A 307 275

    [17]

    Chialvo D R, Dykman M I, Millonas M M 1997 Phys. Rev. Lett. 78 1605

    [18]

    Chew L Y, Ting C 2004 Phys. Rev. E 69 031103

    [19]

    Chew L Y, Ting C, Lai C H 2005 Phys. Rev. E 72 036222

    [20]

    Chew L Y 2012 Phys. Rev. E 85 016212.

    [21]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [22]

    Lipowsky R, Klumpp S 2005 Physica A 352 53

    [23]

    Vale R D 2003 Cell 112 467

    [24]

    Klibas A A, Srivastava H M, Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier) p199

    [25]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative System (Beijing: Science Press) p13 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第13页]

  • [1] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [2] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [3] 季袁冬, 屠浙, 赖莉, 罗懋康. 非对称耦合粒子链在棘齿势中的确定性定向输运. 物理学报, 2015, 64(7): 070501. doi: 10.7498/aps.64.070501
    [4] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [5] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [6] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [7] 谢天婷, 张路, 王飞, 罗懋康. 双频驱动下分数阶过阻尼马达在空间对称势中的定向输运. 物理学报, 2014, 63(23): 230503. doi: 10.7498/aps.63.230503
    [8] 周兴旺, 林丽烽, 马洪, 罗懋康. 时间非对称分数阶类Langevin棘齿. 物理学报, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [9] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [10] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [11] 赖莉, 周薛雪, 马洪, 罗懋康. 分数阶布朗马达在闪烁棘齿势中的合作输运现象. 物理学报, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [12] 李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟. 肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型. 物理学报, 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [13] 李晨璞, 韩英荣, 展永, 谢革英, 胡金江, 张礼刚, 贾利云. 基于三磷酸腺苷调节的分子马达单向能量跃迁模型. 物理学报, 2013, 62(19): 190501. doi: 10.7498/aps.62.190501
    [14] 马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正. 一类分数阶混沌系统的自适应同步. 物理学报, 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [15] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [16] 钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为. 物理学报, 2012, 61(17): 170501. doi: 10.7498/aps.61.170501
    [17] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [18] 赵品栋, 张晓丹. 一类分数阶混沌系统的研究. 物理学报, 2008, 57(5): 2791-2798. doi: 10.7498/aps.57.2791
    [19] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [20] 王奇, 薛秉章, 蔡英时. 非对称型Kerr类介质膜漏波导中的非线性导波. 物理学报, 1988, 37(5): 760-768. doi: 10.7498/aps.37.760
计量
  • 文章访问数:  2970
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-05
  • 修回日期:  2014-04-25
  • 刊出日期:  2014-08-05

空时非对称分数阶类Langevin棘齿

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 福建农林大学计算机与信息学院, 福州 350002
    基金项目: 国家自然科学基金(批准号:11171238)和福建农林大学青年教师基金(批准号:2011XJJ23)资助的课题.

摘要: 研究了空时非对称分数阶类Langevin分子马达棘齿模型,其中势函数是空间对称破缺的周期势,时间非对称类Langevin噪声由Logistic映射生成,而分数阶则刻画了分子马达工作环境的非理想程度. 通过将模型转化为离散映射,即研究其整时间点情形,数值模拟了噪声的时间非对称性、势函数的空间非对称性以及分数阶对模型定向输运行为的影响. 数值模拟结果表明:噪声的时间非对称性是定向流产生的根源,而势函数的空间非对称性能够与其进行竞争与协作,并在适当的参数条件下导致定向流的逆转;分数阶仅影响定向流的大小而不改变其方向. 与经典的整数阶分子马达模型或时间非对称分数阶分子马达棘齿模型相比,该模型可以更为真实地描述分子马达的噪声整流工作机理.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回