Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorithm

Xu Zi-Qiang Yang Tai-Ping Qian Yuan-Yuan Si Fu-Qi

Citation:

Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorithm

Xu Zi-Qiang, Yang Tai-Ping, Qian Yuan-Yuan, Si Fu-Qi
PDF
HTML
Get Citation
  • Global climate change and the formation of the Antarctic ozone hole have prompted people to pay attention to the changes in atmospheric ozone content. The global continuous observation of ozone is achieved by retrieving the global total column concentration from nadir satellite data. In this work, the weighted multiplication algebraic algorithm is combined with the radiative transfer model SCIATRAN, by using the 2011 Chappuis-Wulf band SCIAMACHY limb radiation data to retrieve the stratospheric ozone profile between 15- and 40 km altitude, solving the ozone global stratified observation problems. In the ozone global stratification map, the whole process of the global transmission of ozone formed in low latitude regions to high latitude regions is observed, which is directly related to the Brewer-Dobson circulation. During the most severe period of the Antarctic ozone hole from September to October, the Antarctic polar vortex has an obvious hindering effect on ozone transmission, and the polar vortex has a “transparent wall” effect. On the one hand, it is difficult to transfer ozone from the equatorial region to the Antarctic region for replenishment. On the other hand, the retention of ozone-depleting substances over the Antarctic region leads to the acceleration of ozone depletion, and the combination of low replenishment and high depletion contributes to the Antarctic ozone hole. Compared with the global total column concentration of ozone, the observation of global ozone stratification is very valuable for scientific research and will promote the detailed study of the whole process of ozone formation, transmission, and consumption.
      Corresponding author: Si Fu-Qi, sifuqi@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFC0214702), and the National Natural Science Foundation of China (Grant No. 41705016 ).
    [1]

    Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar

    [2]

    刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar

    [3]

    郑彬,施春华 2007 物理学报 56 4277Google Scholar

    Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar

    [4]

    Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar

    [5]

    Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar

    [6]

    Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar

    [7]

    Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar

    [8]

    曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 物理学报 70 200201Google Scholar

    Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar

    [9]

    Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar

    [10]

    Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892

    [11]

    Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar

    [12]

    Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar

    [13]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [14]

    Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar

    [15]

    Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar

    [16]

    Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar

    [17]

    Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677

    [18]

    Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523

    [19]

    Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar

    [20]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 物理学报 63 214204Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar

    [21]

    赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 物理学报 62 249301Google Scholar

    Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar

    [22]

    Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar

    [23]

    Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504

    [24]

    Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH

    [25]

    Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar

    [26]

    汪自军 2011 博士学位论文 (吉林: 吉林大学)

    Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [27]

    Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar

    [28]

    朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005

    Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)

    [29]

    Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar

    [30]

    Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar

    [31]

    Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar

    [32]

    Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar

    [33]

    Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar

    [34]

    Butchart N 2014 Rev. Geophys. 52 157Google Scholar

  • 图 1  临边观测几何图

    Figure 1.  Limb observation geometry.

    图 2  临边观测原理图

    Figure 2.  Limb observation schematic.

    图 3  辐射归一化与波长配对图

    Figure 3.  Radiance normalization and wavelength pairing diagram.

    图 4  臭氧数密度图

    Figure 4.  Ozone number density profile.

    图 5  15 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Figure 5.  Ozone distribution map at 15 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 8  40 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Figure 8.  Ozone distribution map at 40 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 6  20 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Figure 6.  Ozone distribution map at 20 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 7  30 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Figure 7.  Ozone distribution map at 30 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 9  平流层2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Figure 9.  Ozone distribution map in the stratosphere for 2011: (a) January; (b) April; (c) July; (d) October.

    图 10  南极地区2011年平流层臭氧空洞图 (a) 8月; (b) 9月; (c) 10月; (d) 11月

    Figure 10.  Antarctic stratospheric ozone hole map in 2011: (a) August; (b) September; (c) October; (d) November.

    图 11  9月9日49821轨臭氧结果 (a) SCIAMACHY V3.5; (b)本文结果

    Figure 11.  49821 orbital ozone results on 9 September: (a) SCIAMAHY V3.5; (b) the results of this paper.

    图 12  9月9日49821轨误差分析 (a)相关系数; (b)绝对误差;

    Figure 12.  Error analysis of 49821 orbital on 9 September: (a) Correlation coefficient; (b) absolute error.

  • [1]

    Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar

    [2]

    刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar

    [3]

    郑彬,施春华 2007 物理学报 56 4277Google Scholar

    Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar

    [4]

    Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar

    [5]

    Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar

    [6]

    Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar

    [7]

    Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar

    [8]

    曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 物理学报 70 200201Google Scholar

    Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar

    [9]

    Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar

    [10]

    Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892

    [11]

    Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar

    [12]

    Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar

    [13]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [14]

    Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar

    [15]

    Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar

    [16]

    Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar

    [17]

    Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677

    [18]

    Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523

    [19]

    Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar

    [20]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 物理学报 63 214204Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar

    [21]

    赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 物理学报 62 249301Google Scholar

    Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar

    [22]

    Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar

    [23]

    Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504

    [24]

    Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH

    [25]

    Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar

    [26]

    汪自军 2011 博士学位论文 (吉林: 吉林大学)

    Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [27]

    Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar

    [28]

    朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005

    Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)

    [29]

    Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar

    [30]

    Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar

    [31]

    Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar

    [32]

    Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar

    [33]

    Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar

    [34]

    Butchart N 2014 Rev. Geophys. 52 157Google Scholar

  • [1] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [2] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [3] Fan Shuang, Zhang Ya-Ping, Wang Fan, Gao Yun-Long, Qian Xiao-Fan, Zhang Yong-An, Xu Wei, Cao Liang-Cai. Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display. Acta Physica Sinica, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [4] Wu Jia-Jian, Gong Kai, Wang Cong, Wang Lei. Enhancing resilience of interdependent networks against cascading failures under preferential recovery strategies. Acta Physica Sinica, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [5] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] Xiang Zheng, Tan Jia-Qiang, Ni Bin-Bin, Gu Xu-Dong, Cao Xing, Zou Zheng-Yang, Zhou Chen, Fu Song, Shi Run, Zhao Zheng-Yu, He Feng-Ming, Zheng Cheng-Yao, Yin Qian, Wang Hao. A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Physica Sinica, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [7] Luo Shi-Long, Gong Kai, Tang Chao-Sheng, Zhou Jing. A ranking approach based on k-shell decomposition method by filtering out redundant link in weighted networks. Acta Physica Sinica, 2017, 66(18): 188902. doi: 10.7498/aps.66.188902
    [8] Wang Shu-Zhi, Zhu Guang-Wu, Bai Wei-Hua, Liu Cong-Liang, Sun Yue-Qiang, Du Qi-Fei, Wang Xian-Yi, Meng Xiang-Guang, Yang Guang-Lin, Yang Zhong-Dong, Zhang Xiao-Xin, Bi Yan-Meng, Wang Dong-Wei, Xia Jun-Ming, Wu Di, Cai Yue-Rong, Han Ying. For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation. Acta Physica Sinica, 2015, 64(8): 089301. doi: 10.7498/aps.64.089301
    [9] Liu Yang-Yang, Lian Bao-Wang, Zhao Hong-Wei, Liu Ya-Qing. Indoor pseudolite relative localization algorithm with kalman filter. Acta Physica Sinica, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [10] Su Yong, Fan Dong-Ming, You Wei. Gravity field model calculated by using the GOCE data. Acta Physica Sinica, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [11] Liu Cheng, Bai Wen-Guang, Zhang Peng, Sun You-Wen, Si Fu-Qi. The inverse method of carbon monoxide from satellite measurement and the result analysis. Acta Physica Sinica, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [12] Lü Tian-Yang, Xie Wen-Yan, Zheng Wei-Min, Piao Xiu-Feng. Analysis of community evaluation criterion and discovery algorithm of weighted complex network. Acta Physica Sinica, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [13] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] Lu Wei-Tao, Wang Shun-Jin, Zhang Hua. Algebraic dynamical algorithm for numerical solution of artificial earth satellite motion equation. Acta Physica Sinica, 2007, 56(7): 3655-3661. doi: 10.7498/aps.56.3655
    [15] Huang Si-Xun, Sheng Zheng. The new algorithm for standalone positioning with global positioning system and numerical experiments. Acta Physica Sinica, 2006, 55(12): 6720-6726. doi: 10.7498/aps.55.6720
    [16] Gong Zhi-Qiang, Feng Guo-Lin, Wan Shi-Quan, Li Jian-Ping. Analysis of features of climate change of Huabei area and the global climate change based on heuristic segmentation algorithm. Acta Physica Sinica, 2006, 55(1): 477-484. doi: 10.7498/aps.55.477
    [17] Cao Tian-De, Xu Li-Na. Pairing symmetry with interband interaction. Acta Physica Sinica, 2005, 54(3): 1406-1409. doi: 10.7498/aps.54.1406
    [18] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [19] ZHOU SHI-PING, XU KE-XI, NIU JIN-HAI, QU HAI. SOLUTIONS FOR THE WAVE FUNCTIONS OF MIXED PAIRING SYMMETRY SUPERCONDUCTORS. Acta Physica Sinica, 1999, 48(2): 342-351. doi: 10.7498/aps.48.342
    [20] . Acta Physica Sinica, 1933, 1(1): 38-50. doi: 10.7498/aps.1.38
Metrics
  • Abstract views:  2349
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2022
  • Accepted Date:  27 September 2022
  • Available Online:  27 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回