Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

von Kármán vortex street in dipole BEC induced by a circular moving potential

Xi Zhong-Hong Zhao Yong-Zhen Wang Guang-Bi Shi Yu-Ren

Citation:

von Kármán vortex street in dipole BEC induced by a circular moving potential

Xi Zhong-Hong, Zhao Yong-Zhen, Wang Guang-Bi, Shi Yu-Ren
PDF
HTML
Get Citation
  • The dynamical behaviors of a dipole Bose-Einstein condensate (BEC), which is stirred by a circular moving Gaussian potential, are numerically investigated by using the mean-field theory. In this work, the atom is assumed to polarize along the z-axis. Firstly, the stationary state of the system is obtained by solving the quasi-two-dimensional Gross-Pitaevskki equation numerically under periodic boundary conditions. And then, taking the obtained ground state as the initial condition, the dynamic evolution of the dipole BEC system is studied by the time-splitting Fourier spectrum method. Four types of emissions, namely, the stable laminar flow, vortex dipole, Bénard–von Kármán (BvK) vortex street and irregular turbulence, are observed in the wake when the velocity and size of the Gaussian potential change gradually. When the velocity of the Gaussian potential reaches the critical velocity of vortex excitation, vortex pairs with opposite circulations alternately fall off from the surface of the Gaussian potential. Owing to the interaction between the vortex dipoles, the dipoles rotate around their own centers. Finally, a ring structure will be formed and exist in the wake stably for a long time. With the increase of the velocity of Gaussian potential, the period of dipoles shedding is also shortened. For the appropriate velocity and size of the Gaussian potential, the vortex pairs with the same circulations will periodically fall off from the Gaussian potential and stably distributed on the inner and outer rings, forming BvK vortex street. Our caculation reveals that the conditions for forming BvK vortex street when the dipole BEC is stirred with a circular moving potential are very restricted. When the velocity or size of the Gaussian potential continues to increase, the phenomenon of the periodic vortex pairs shedding in the wake of the Gaussian potential will disappear, and the shedding pattern of the dipole BEC becomes irregular. Using experimental parameters, the parameter ranges of different dipole interactions are obtained through numerical calculation. The influences of dipole interactions, velocity and size of the Gaussian potential on different emission are discussed. In the end, the physical mechanisms of different emissions are analyzed by calculating the drag force acting on Gaussian potential.
      Corresponding author: Shi Yu-Ren, shiyr@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12065022), the 2022 Longyuan Youth Innovation and Entrepreneurship Talents (Individual) Project, the Higher Education Teaching Achievement Cultivation of Gansu Province, China (Grant No. 2020-184), the Innovation Foundation for Colleges and Universities Teachers of Gansu Province, China (Grant No. 2023B-219), the Project of Teaching Achievement Cultivation of Gansu Normal College for Nationalities, China (Grant No. GNUNJXCGPY2216), and the Education Science “the Fourteenth Five-year Plan” Project of Gansu Province, China (Grant No. 2021-2060).
    [1]

    Kim I, Wu X L 2015 Phys. Rev. E 92 043011Google Scholar

    [2]

    Crowdy D G, Krishnamurthy V S 2017 Phys. Rev. Fluids 2 114701Google Scholar

    [3]

    Iima M 2019 Phys. Rev. E 99 062203Google Scholar

    [4]

    Ponta F L Aref H 2004 Phys. Rev. Lett. 93 084501Google Scholar

    [5]

    Wille R 1960 Adv. Appl. Mech. 6 273

    [6]

    Williamson C H K 1996 Annu. Rev. Fluid. Mech. 28 477Google Scholar

    [7]

    Thoraval M J, Takehara K, Etoh T G, Popinet S, Ray P, Josserand C, Zaleski S, Thoroddsen S T 2012 Phys. Rev. Lett. 108 264506Google Scholar

    [8]

    Reeves M T, Billam T P, Anderson B P, Bradley A S 2015 Phys. Rev. Lett. 114 155302Google Scholar

    [9]

    Fujimoto K, Tsubota M 2010 Phys. Rev. A 82 043611Google Scholar

    [10]

    Fujimoto K, Tsubota M 2011 Phys. Rev. A 83 053609Google Scholar

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404Google Scholar

    [12]

    Sasaki K, Suzuki N, Saito H 2011 Phys. Rev. A 83 033602Google Scholar

    [13]

    Stagg G W, Parker N G, Barenghi C F 2014 J. Phys. B At. Mol. Opt. Phys. 47 095304Google Scholar

    [14]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys. Conf. Ser. 594 012044Google Scholar

    [15]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627Google Scholar

    [16]

    Kwon W J, Moon G, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615Google Scholar

    [17]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613Google Scholar

    [18]

    Kwon W J, Kim J H, Seo S W, Shin Y 2016 Phys. Rev. Lett. 117 245301Google Scholar

    [19]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607Google Scholar

    [20]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435Google Scholar

    [21]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623Google Scholar

    [22]

    Yi S and You L 2000 Phys. Rev. A 61 041604Google Scholar

    [23]

    Xi Z H, Zhao Y Z, Shi Y R 2021 Phys. A 572 125866Google Scholar

    [24]

    Marinescu M andYou L 1998 Phys. Rev. Lett. 81 4596Google Scholar

    [25]

    Deb B and You L 2001 Phys. Rev. A 64 022717Google Scholar

    [26]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401Google Scholar

    [27]

    Giovanazzi S, Gorlitz A, Pfau T, 2002 Phys. Rev. Lett. 89 130401Google Scholar

    [28]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404Google Scholar

    [29]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar

    [30]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612Google Scholar

    [31]

    Fu F F, Kong L H, Wang L, Yuan X U, Zeng Z 2018 Chin. J. Comput. Phys. 35 657

    [32]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621Google Scholar

    [33]

    Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 7109

  • 图 1  高斯势以不同速度$ \upsilon $圆周运动时偶极BEC的密度分布, $ d = 1.8{a_0} $ (a)$ \upsilon = 0.6\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (b) $ \upsilon = 0.8\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (c) $ \upsilon = 0.9\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (d) $ \upsilon = 1.1\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $

    Figure 1.  Density distribution of dipolar BEC condensate which is circular stirred by Gaussian potential with different velovity $ \upsilon $, $ d = 1.8{a_0} $: (a)$ \upsilon = 0.6\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (b) $ \upsilon = 0.8\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (c) $ \upsilon = 0.9\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $; (d) $ \upsilon = 1.1\sqrt {{{\hbar {\omega _0}} \mathord{\left/ {\vphantom {{\hbar {\omega _0}} m}} \right. } m}} $.

    图 2  涡旋偶极子激发演化过程 (a)—(d)为图1(b)参数下时间$ t = $30, 60, 250, 600时高斯势尾流密度分布, 观察区域为$ 15{a_0} \times 15{a_0} $, 符号+, –分别表示点涡旋逆时针与顺时针旋转; (e)—(h)为对应时刻相图

    Figure 2.  Evolution of the vortex dipole emission: (a)–(d) Display density distributions of the wake after Gaussian potential at $ t = $30, 60, 250, 600 for the parameters in Fig. 1(b), the field of view is $ 15{a_0} \times 15{a_0} $, the symbols + and – denote counterclockwise and clockwise circulations of point vortices; (e)–(h) depict phase profiles corresponding to Figs. (a)–(d).

    图 3  BvK涡街演化过程 (a)—(f)为图1(c)参数下时间$ t = $40, 90, 130, 170, 300, 900时高斯势尾流密度分布, 观察区域为$ 15{a_0} \times 15{a_0} $, (f)中白色虚线圆环分别表示内外两列涡旋对阵列稳定出现的位置; (g)—(l)为对应时刻相图

    Figure 3.  Evolution of the BvK vortex street: (a)–(f) Display density distributions of the wake after Gaussian potential at $ t = $40, 90, 130, 170, 300, 900 for the parameters in Fig. 1(c), the field of view is $ 15{a_0} \times 15{a_0} $, the white dotted ring in (f) represent the position where the inner and outer vortex pair arrays appear stably; (g)–(l) depict phase profiles corresponding to Figs. (a)–(f).

    图 4  不同偶极相互作用下BEC各种激发模式的参数区间 (a) g = 100, $ {a_{{\text{dd}}}} $ = 20; (b) g = 100, $ {a_{{\text{dd}}}} $ = 40. 黑色虚线箭头表示图1中速度$ \upsilon $的变化

    Figure 4.  Parameter regimes of different vortex emission in Dipole BEC under different dipole interactions: (a) g = 100, $ {a_{{\text{dd}}}} $ = 20; (b) g = 100, $ {a_{{\text{dd}}}} $ = 40. The black dotted arrows indicate the change of $ \upsilon $ used in Fig. 1.

    图 5  高斯势所受拖拽力随时间的变化, 蓝色实线, 红色虚线分别表示拖拽力的切向和法向分量, (a)—(c)各参数分别与图1(b)—(d)对应

    Figure 5.  Evolution of the normalized drag force acting on the Gaussian potential. The solid blue lines and dotted red lines show the tangential and normal components of the drag force. The parameters used in (a)–(c) are the same as those in Fig.1(b)–(d), respectively.

  • [1]

    Kim I, Wu X L 2015 Phys. Rev. E 92 043011Google Scholar

    [2]

    Crowdy D G, Krishnamurthy V S 2017 Phys. Rev. Fluids 2 114701Google Scholar

    [3]

    Iima M 2019 Phys. Rev. E 99 062203Google Scholar

    [4]

    Ponta F L Aref H 2004 Phys. Rev. Lett. 93 084501Google Scholar

    [5]

    Wille R 1960 Adv. Appl. Mech. 6 273

    [6]

    Williamson C H K 1996 Annu. Rev. Fluid. Mech. 28 477Google Scholar

    [7]

    Thoraval M J, Takehara K, Etoh T G, Popinet S, Ray P, Josserand C, Zaleski S, Thoroddsen S T 2012 Phys. Rev. Lett. 108 264506Google Scholar

    [8]

    Reeves M T, Billam T P, Anderson B P, Bradley A S 2015 Phys. Rev. Lett. 114 155302Google Scholar

    [9]

    Fujimoto K, Tsubota M 2010 Phys. Rev. A 82 043611Google Scholar

    [10]

    Fujimoto K, Tsubota M 2011 Phys. Rev. A 83 053609Google Scholar

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404Google Scholar

    [12]

    Sasaki K, Suzuki N, Saito H 2011 Phys. Rev. A 83 033602Google Scholar

    [13]

    Stagg G W, Parker N G, Barenghi C F 2014 J. Phys. B At. Mol. Opt. Phys. 47 095304Google Scholar

    [14]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys. Conf. Ser. 594 012044Google Scholar

    [15]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627Google Scholar

    [16]

    Kwon W J, Moon G, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615Google Scholar

    [17]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613Google Scholar

    [18]

    Kwon W J, Kim J H, Seo S W, Shin Y 2016 Phys. Rev. Lett. 117 245301Google Scholar

    [19]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607Google Scholar

    [20]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435Google Scholar

    [21]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623Google Scholar

    [22]

    Yi S and You L 2000 Phys. Rev. A 61 041604Google Scholar

    [23]

    Xi Z H, Zhao Y Z, Shi Y R 2021 Phys. A 572 125866Google Scholar

    [24]

    Marinescu M andYou L 1998 Phys. Rev. Lett. 81 4596Google Scholar

    [25]

    Deb B and You L 2001 Phys. Rev. A 64 022717Google Scholar

    [26]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401Google Scholar

    [27]

    Giovanazzi S, Gorlitz A, Pfau T, 2002 Phys. Rev. Lett. 89 130401Google Scholar

    [28]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404Google Scholar

    [29]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar

    [30]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612Google Scholar

    [31]

    Fu F F, Kong L H, Wang L, Yuan X U, Zeng Z 2018 Chin. J. Comput. Phys. 35 657

    [32]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621Google Scholar

    [33]

    Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 7109

  • [1] Shao Kai-Hua, Xi Zhong-Hong, Xi Bao-Long, Tu Pu, Wang Qing-Qing, Ma Jin-Ping, Zhao Xi, Shi Yu-Ren. Asynchronous quantum Kármán vortex street in two-component Bose-Einstein condensate with PT symmetric potential. Acta Physica Sinica, 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] Yu Shu-Juan, Liu Zhu-Qin, Li Yan-Peng. Ellipticity properties of symmetric molecules $ {\text{H}}_{\text{2}}^ + $ in strong and short-wavelength laser fields. Acta Physica Sinica, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [3] Xi Zhong-Hong,  Yang Xue-Ying,  Tang Na,  Song Lin,  Li Xiao-Lin,  Shi Yu-Ren. Bénard-von Kármán vortex street in dipolar Bose-Einstein condensate trapped by square-like potential. Acta Physica Sinica, 2018, 67(23): 230501. doi: 10.7498/aps.67.20181604
    [4] Cao Wan-Qiang, Liu Pei-Zhao, Chen Yong, Pan Rui-Kun, Qi Ya-Jun. Effect of hysteresis of dipole on remnant polarization in ferroelectrics. Acta Physica Sinica, 2016, 65(13): 137701. doi: 10.7498/aps.65.137701
    [5] Li Yan-Peng, Yu Shu-Juan, Chen Yan-Jun. Wavelength-dependent perpendicular-harmonics efficiency from oriented CO2 molecule. Acta Physica Sinica, 2015, 64(18): 183102. doi: 10.7498/aps.64.183102
    [6] Chen Ke, You Yun-Xiang, Hu Tian-Qun. Experiments on vortex dipoles generated by a submerged round jet. Acta Physica Sinica, 2013, 62(19): 194702. doi: 10.7498/aps.62.194702
    [7] Wang Wen-Yuan, Yang Yang, Meng Hong-Juan, Ma Ying, Qi Peng-Tang, Ma Yun-Yun, Duan Wen-Shan. The self-trapping of superfluid Fermi gases in the Bose-Einstein condensation regime and in unitarity. Acta Physica Sinica, 2012, 61(10): 100301. doi: 10.7498/aps.61.100301
    [8] Ge De-Biao, Wei Bing. Calculating far field of an arbitrarily oriented electric dipole located above layered half space using reciprocity theorem. Acta Physica Sinica, 2012, 61(5): 050301. doi: 10.7498/aps.61.050301
    [9] Gao Zeng-Hui, He De, Lü Bai-Da. Evolution of an optical vortex dipole diffracted by a half screen. Acta Physica Sinica, 2011, 60(7): 074209. doi: 10.7498/aps.60.074209
    [10] Zhu Min-Hui, Wang Xiao-Qing, Chen Ke, You Yun-Xiang, Hu Tian-Qun. Experiments on quasi-two-dimensional dipolar vortex streets generated by a moving momentum source in a stratified fluid. Acta Physica Sinica, 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [11] Xu Yan, Fan Wei, Chen Bing, Li Zhao-Xin. Scheme for generating maximally two-mode entangled state in an S=1 antiferromagnetic Bose-Einstein condensation. Acta Physica Sinica, 2011, 60(6): 060305. doi: 10.7498/aps.60.060305
    [12] Yan Dong, Song Li-Jun. Single-particle coherence and pairwise entanglement in a two-component Bose-Einstein condensate impacted by the periodic impulses. Acta Physica Sinica, 2010, 59(10): 6832-6836. doi: 10.7498/aps.59.6832
    [13] Li Sheng-Chang, Duan Wen-Shan. Nonlinear Ramsey interference on a two-component Bose-Einstein condensate. Acta Physica Sinica, 2009, 58(7): 4396-4401. doi: 10.7498/aps.58.4396
    [14] Wu Chong-Qing, Zhao Shuang. Study on the localization of the electric dipole sources. Acta Physica Sinica, 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [15] Wang Long-Hai, Yu Jun, Wang Yun-Bo, Peng Gang, Liu Feng, Gao Jun-Xiong. A model of ferroelectric capacitors based on hysteresis loop. Acta Physica Sinica, 2005, 54(2): 949-954. doi: 10.7498/aps.54.949
    [16] JIANG ZE-HUI, XU SU-JUAN, CHEN WEI, MEN SHOU-QIANG, LU KUN-QUAN. IMAGE DIPOLE METHOD FOR THE DIPOLE MOMENTS OF CONDUCTING PARTICLE CLUSTERS. Acta Physica Sinica, 2000, 49(8): 1457-1463. doi: 10.7498/aps.49.1457
    [17] TAN WEI-HAN, YAN KE-ZHU. A GENERAL APPROACH TO THE BOSE-EINSTEIN CONDENSATION OF NEUTRAL ATOMS WITH REPELLENT INTERACTION. Acta Physica Sinica, 1999, 48(11): 1983-1991. doi: 10.7498/aps.48.1983
    [18] Dai Qi-Run, Zhao Shu-Song. . Acta Physica Sinica, 1995, 44(8): 1203-1209. doi: 10.7498/aps.44.1203
    [19] YANG ZHENQ-JU. THE ELASTIC DIPOLE MODEL OF STRAINED CRYSTALS. Acta Physica Sinica, 1983, 32(11): 1416-1425. doi: 10.7498/aps.32.1416
    [20] ZHANG EN-QIU. HEORY OF THERMIONIC EMISSION (II)——ON THE MONOATOMIC LAYER AND DIPOLE THEORY. Acta Physica Sinica, 1974, 23(5): 53-63. doi: 10.7498/aps.23.53
Metrics
  • Abstract views:  3400
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2022
  • Accepted Date:  15 January 2023
  • Available Online:  11 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回