Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bénard-von Kármán vortex street in dipolar Bose-Einstein condensate trapped by square-like potential

Xi Zhong-Hong Yang Xue-Ying Tang Na Song Lin Li Xiao-Lin Shi Yu-Ren

Citation:

Bénard-von Kármán vortex street in dipolar Bose-Einstein condensate trapped by square-like potential

Xi Zhong-Hong, Yang Xue-Ying, Tang Na, Song Lin, Li Xiao-Lin, Shi Yu-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bénard-von Kármán vortex street in dipolar Bose-Einstein Condensate (BEC) trapped by a square-like potential is investigated numerically. In the frame of mean-field theory, the nonlinear dynamic of the dipolar BEC can be described by the so-called two-dimensional Gross-Pitaevskii (GP) equation with long-range interaction. In this paper, we only consider the case that all the dipoles are polarized along the z-axis, which is perpendicular to the plane of disc-shaped BEC. Firstly, the stationary state of the BEC is obtained by the imaginary-time propagation approach. Secondly, the nonlinear dynamic of the BEC, when a moving Gaussian potential exists in such a system, is numerically investigated by the time-splitting Fourier spectral method, in which the stationary state obtained before is set to be the initial state. The results show that when the velocity of the cylindrical obstacle potential reaches a critical value, which depends on interaction strength and the shape of the potential, the vortex-antivortex pairs will be generated alternately in the super-flow behind the obstacle potential. However, in general, such a vortex-antivortex pair structure is dynamically unstable. When the velocity of the obstacle potential increases to a certain value and for a suitable potential width, a stable vortex structure called Bénard-von Kármán vortex street will be formed. While this phenomenon emerges, the vortices in pairs created by the obstacle potential have the same circulation. The pairs with opposite circulations are alternately released from the moving obstacle potential. For larger potential width and velocity, the shedding pattern becomes irregular. We also numerically investigate the effects of the dipole interaction strength, the width and the velocity of the obstacle potential on the vortex structures arising in the wake flow. As a result, the phase graph is presented by lots of numerical calculations for a group of given physical parameters. Thirdly, the drag force on the obstacle potential is also calculated and the mechanical mechanism of vortex pair is analyzed. Finally, we discuss how to find the phenomenon of Bénard-von Kármán vortex street in dipolar BEC experimentally.
    • Funds: Project supported by the National Natural Science Foundation of P. R. China (Grant Nos.11565021, 11047010), the Scientific Research Foundation of Northwest Normal University (Grant No. NWNU-LKQN-16-3), the Scientific Research Foundation of Gansu Normal University for Nationalities (Grant Nos.GSNU-SHGG-1806, GSNUXM16-44).
    [1]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607

    [2]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [3]

    Abrikosov A A, Eksp Z 1957 Phys. JETP 5 1174

    [4]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Sci. 292 476

    [5]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435

    [6]

    Bénard H, Acad C R 1908 Science 147 839

    [7]

    von Kármán T, Gottingen N G W 1911 Math. Phys. Kl. 509 721

    [8]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477

    [9]

    Barenghi C F 2008 Physica D 237 2195

    [10]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2016 Phys. Rev. Lett. 24 117

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404

    [12]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627

    [13]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613

    [14]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615

    [15]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. A 83 033602

    [16]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [17]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Yi S, You L 2000 Phys. Rev. A 61 041604

    [20]

    Marinescu M, You L 1998 Phys. Rev. Lett. 81 4596

    [21]

    Deb B, You L 2001 Phys. Rev. A 64 022717

    [22]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623

    [23]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401

    [24]

    Giovanazzi S, Gorlitz A, Pfau T 2002 Phys. Rev. Lett. 89 130401

    [25]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404

    [26]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836

    [27]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612

    [28]

    Mou S, Guo K X, Xiao B 2014 Superlattices Microstruct. 65 309

    [29]

    Finne A P, Araki T, Blaauwgeers R, Eltsov V B, Kopnin N B, Kruslus M, Skrbek L, Tsubota M, Volovikand G E 2003 Nature 424 1022

    [30]

    Nore C, Huepe C, Brachet M E 2000 Phys. Rev. Lett. 84 2191

    [31]

    Volovik G E 2003 JETP Lett. 78 533

    [32]

    Inouye S, Gupta S, Rosenband T, Chikkatur A P, orlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E, Ketterle W 2001 Phys. Rev. Lett. 87 080402

    [33]

    Neely T W, Samson E C, Bradley A S, Davis M J 2010 Phys. Rev. Lett. 104 160401

    [34]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys.: Conf. Ser. 594 012044

    [35]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621

    [36]

    Kadokura T, Yoshida J, Saito H 2014 Phys. Rev. A 90 013612

  • [1]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607

    [2]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402

    [3]

    Abrikosov A A, Eksp Z 1957 Phys. JETP 5 1174

    [4]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Sci. 292 476

    [5]

    Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R, Zhang X F 2016 Phys. Lett. A 380 435

    [6]

    Bénard H, Acad C R 1908 Science 147 839

    [7]

    von Kármán T, Gottingen N G W 1911 Math. Phys. Kl. 509 721

    [8]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477

    [9]

    Barenghi C F 2008 Physica D 237 2195

    [10]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2016 Phys. Rev. Lett. 24 117

    [11]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. Lett. 104 150404

    [12]

    Kwon W J, Moon G, Choi J, Seo S W, Shin Y 2014 Phys. Rev. A 90 063627

    [13]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 92 033613

    [14]

    Kwon W J, Seo S W, Shin Y 2015 Phys. Rev. A 91 053615

    [15]

    Sasaki K, Suzuki N, Saito H 2010 Phys. Rev. A 83 033602

    [16]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [17]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Yi S, You L 2000 Phys. Rev. A 61 041604

    [20]

    Marinescu M, You L 1998 Phys. Rev. Lett. 81 4596

    [21]

    Deb B, You L 2001 Phys. Rev. A 64 022717

    [22]

    Cai Y Y, Matthias R, Lei Z, Bao W Z 2010 Phys. Rev. A 82 043623

    [23]

    Nath R, Pedri P, Santos L 2009 Phys. Rev. Lett. 102 050401

    [24]

    Giovanazzi S, Gorlitz A, Pfau T 2002 Phys. Rev. Lett. 89 130401

    [25]

    Pedri P, Santos L 2005 Phys. Rev. Lett. 95 200404

    [26]

    Bao W, Chem L L, Lim F Y 2006 J. Comput. Phys. 219 836

    [27]

    Bao W, Wang H 2006 J. Comput. Phys. 217 612

    [28]

    Mou S, Guo K X, Xiao B 2014 Superlattices Microstruct. 65 309

    [29]

    Finne A P, Araki T, Blaauwgeers R, Eltsov V B, Kopnin N B, Kruslus M, Skrbek L, Tsubota M, Volovikand G E 2003 Nature 424 1022

    [30]

    Nore C, Huepe C, Brachet M E 2000 Phys. Rev. Lett. 84 2191

    [31]

    Volovik G E 2003 JETP Lett. 78 533

    [32]

    Inouye S, Gupta S, Rosenband T, Chikkatur A P, orlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E, Ketterle W 2001 Phys. Rev. Lett. 87 080402

    [33]

    Neely T W, Samson E C, Bradley A S, Davis M J 2010 Phys. Rev. Lett. 104 160401

    [34]

    Stagg G W, Allen A J, Barenghi C F, Parker N G 2015 J. Phys.: Conf. Ser. 594 012044

    [35]

    Reeves M T, Anderson B P, Bradley A S 2012 Phys. Rev. A 86 053621

    [36]

    Kadokura T, Yoshida J, Saito H 2014 Phys. Rev. A 90 013612

  • [1] Shao Kai-Hua, Xi Zhong-Hong, Xi Bao-Long, Tu Pu, Wang Qing-Qing, Ma Jin-Ping, Zhao Xi, Shi Yu-Ren. Asynchronous quantum Kármán vortex street in two-component Bose-Einstein condensate with PT symmetric potential. Acta Physica Sinica, 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] Ying Yao-Jun, Li Hai-Bin. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] Xi Zhong-Hong, Zhao Yong-Zhen, Wang Guang-Bi, Shi Yu-Ren. von Kármán vortex street in dipole BEC induced by a circular moving potential. Acta Physica Sinica, 2023, 72(8): 080501. doi: 10.7498/aps.72.20222312
    [4] Zhang Zhi-Qiang. Vortex chains in rotating two-dimensional Bose-Einstein condensate in a harmonic plus optical lattices potential. Acta Physica Sinica, 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [5] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [6] Zhao Shan-Shan, He Li, Yu Zeng-Qiang. Anisotropic dissipation in a dipolar Bose-Einstein condensate. Acta Physica Sinica, 2020, 69(8): 080302. doi: 10.7498/aps.69.20200025
    [7] Zhao Wen-Jing, Wen Ling-Hua. Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells. Acta Physica Sinica, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [8] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [9] Huang Fang, Li Hai-Bin. Adiabatic tunneling of Bose-Einstein condensatein double-well potential. Acta Physica Sinica, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [10] Xi Yu-Dong, Wang Deng-Long, She Yan-Chao, Wang Feng-Jiao, Ding Jian-Wen. Landau-Zener tunneling behaviors of Bose-Einstein condensates in a dichromatic optical lattice. Acta Physica Sinica, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [11] Xu Yan, Jia Duo-Je, Li Zhao-Xin, Hou Feng-Chao, Tan Lei, Zhang Lu-Yin. Energy level-splitting of ground state in spinor Bose-Einstein condensate with large number of atoms. Acta Physica Sinica, 2009, 58(1): 55-60. doi: 10.7498/aps.58.55
    [12] Huang Jin-Song, Chen Hai-Feng, Xie Zheng-Wei. Modulational instability of two-component dipolar Bose-Einstein condensates in an optical lattice. Acta Physica Sinica, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [13] Li Ju-Ping, Tan Lei, Zang Xiao-Fei, Yang Ke. Dynamics of dipolar spinor condensates in the external magnetic field. Acta Physica Sinica, 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [14] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] Liu Ze-Zhuan, Yang Zhi-An. Influence of noise on self-trapping of Bose-Einstein condensates in double-well trap. Acta Physica Sinica, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [16] Zang Xiao-Fei, Li Ju-Ping, Tan Lei. Nonlinear dynamical properties of susceptibility of a spinor Bose-Einstein condensate with dipole-dipole interaction in a double-well potential. Acta Physica Sinica, 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [17] Wang Guan-Fang, Fu Li-Bin, Zhao Hong, Liu Jie. Self-trapping and its periodic modulation of Bose-Einstein condensates in double-well trap. Acta Physica Sinica, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] Wang Chong, Yan Ke-Zhu. Numerical research on critical temperature of Bose-Einstein condensation for gas with interaction in harmonic trap. Acta Physica Sinica, 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [19] Xu Yan, Jia Duo-Jie, Li Xi-Guo, Zuo Wei, Li Fa-Shen. A novel solution to singly quantized vortex in big N Bose-Einstein condensate. Acta Physica Sinica, 2004, 53(9): 2831-2834. doi: 10.7498/aps.53.2831
    [20] WANG DE-ZHONG, LU XING-HUA, HUANG HU, LI SHI-QUN. A W-SHAPED POTENTIAL TRAP WITH AXIAL SYMMETRY FOR A RING-SHAPED BOSE-EINSTEIN CONDENSATE. Acta Physica Sinica, 1999, 48(7): 1192-1197. doi: 10.7498/aps.48.1192
Metrics
  • Abstract views:  6363
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2018
  • Accepted Date:  26 September 2018
  • Published Online:  05 December 2018

/

返回文章
返回