Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi-stability in a fifth-order voltage-controlled memristor-based Chua's chaotic circuit

Lin Yi Liu Wen-Bo Shen Qian

Citation:

Bi-stability in a fifth-order voltage-controlled memristor-based Chua's chaotic circuit

Lin Yi, Liu Wen-Bo, Shen Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Generally, the occurrence of multiple attractors indicates that the multi-stability existing in a nonlinear dynamical system and the long-time motion behavior are essentially different, depending on which basin of attraction the initial condition belongs to. Up to now, due to the emergence of multi-stability, some particular memristor-based nonlinear circuits whose dynamical behaviors are extremely related to memristor initial conditions or other initial conditions have attracted considerable attention. By replacing linear or nonlinear resistors with memristor emulators in some already-existing oscillating circuits or introducing memristor emulators with different nonlinearities into these oscillating circuits, various memristor-based nonlinear dynamical circuits have been constructed and broadly investigated. Motivated by these considerations, we present a novel fifth-order voltage-controlled memristor-based Chua's chaotic circuit in this paper, from which a wonderful phenomenon of bi-stability is well demonstrated by numerical simulations and PSIM circuit simulations. Note that the bi-stability is a special kind of multi-stability, which is rarely reported in the memristor-based chaotic circuits.
    The proposed memristor-based Chua's chaotic circuit is constructed by inserting an inductor into the coupled resistor branch in series and substituting the Chua's diode with a voltage-controlled memristor in the classical Chua's circuit. Five-dimensional system model is established, of which the equilibrium point and its stability are investigated. Theoretical derivation results indicate that the proposed circuit owns one or three equilibrium points related to the circuit parameters. Especially, unlike the newly reported memristive circuit with bi-stability, the proposed memristor-based Chua's chaotic circuit has only one zero equilibrium point under the given parameters, but it can generate coexistent chaotic and periodic behaviors, and the bi-stability occurs in such a memristive Chua's circuit. By theoretical analyses, numerical simulations and PSIM circuit simulations, the bi-stability phenomenon of coexistent chaotic attractors and periodic limit cycles with different initial conditions and their formation mechanism are revealed and expounded. Besides, with the dimensionless system equations, the corresponding initial condition-dependent dynamical behaviors are further numerically explored through bifurcation diagram, Lyapunov exponents, phased portraits and attraction basin. Numerical simulation results demonstrate that the proposed memristive Chua's system can generate bi-stability under different initial conditions. The PSIM circuit simulations and numerical simulations are consistent well with each other, which perfectly verifies the theoretical analyses.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471191) and the Aeronautical Science Foundation of China (Grant No. 20152052026).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [4]

    Yu D S, Iu H H C, Fitch A L, Liang Y 2014 IEEE Trans. Circuits Syst. I: Regular Papers 61 2888

    [5]

    Sánchez-López C, Mendoza-López J, Carrasco-Aguilar M A, Muñiz-Montero C 2014 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 61 309

    [6]

    Yang C, Choi H, Park S, Sah M P, Kim H, Chua L O 2015 Semicond. Sci. Technol. 30 015007

    [7]

    Yu D S, Zheng C Y, Iu H H C, Fernando T, Chua L O 2017 IEEE Access 5 1284

    [8]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [9]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [10]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893

    [11]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186

    [12]

    Bao B C, Wang N, Xu Q, Wu H G, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 64 977

    [13]

    Xu Q, Zhang Q L, Bao B C, Hu Y H 2017 IEEE Access 5 21039

    [14]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [15]

    Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J 2015 Nonlinear Dyn. 81 215

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Bao B C, Jiang P, Wu H G, Hu F W 2015 Nonlinear Dyn. 79 2333

    [18]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcation Chaos 22 1250133

    [19]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurcation Chaos 21 2629

    [20]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [21]

    Zhao Y B, Zhang X Z, Xu J, Guo Y C 2015 Chaos, Solitons Fractals 81 315

    [22]

    Bao B C, Hu F W, Chen M, Xu Q, Yu Y J 2015 Int. J. Bifurcation Chaos 25 1550075

    [23]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [24]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [25]

    Wei Z C, Wang R R, Liu A P 2014 Math. Comput. Simulat. 100 13

    [26]

    Bao B C, Wu H G, Xu L, Chen M, Hu W 2018 Int. J. Bifurcation Chaos 28 1850019

    [27]

    Richter H 2008 Chaos, Solitons Fractals 36 559

    [28]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

    [29]

    Bao H, Wang N, Wu H G, Song Z, Bao B C 2018 IETE Tech. Rev. 6 1

    [30]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607

    [31]

    Chen M, Sun M X, Bao B C, Wu H G, Xu Q, Wang J 2018 Nonlinear Dyn. 91 1395

    [32]

    Morfu S, Nofiele B, Marquié P 2007 Phys. Lett. A 367 192

    [33]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [34]

    Chua L O 2012 Proc. IEEE 100 1920

    [35]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275

    [36]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711

    [37]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [4]

    Yu D S, Iu H H C, Fitch A L, Liang Y 2014 IEEE Trans. Circuits Syst. I: Regular Papers 61 2888

    [5]

    Sánchez-López C, Mendoza-López J, Carrasco-Aguilar M A, Muñiz-Montero C 2014 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 61 309

    [6]

    Yang C, Choi H, Park S, Sah M P, Kim H, Chua L O 2015 Semicond. Sci. Technol. 30 015007

    [7]

    Yu D S, Zheng C Y, Iu H H C, Fernando T, Chua L O 2017 IEEE Access 5 1284

    [8]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [9]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [10]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893

    [11]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186

    [12]

    Bao B C, Wang N, Xu Q, Wu H G, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 64 977

    [13]

    Xu Q, Zhang Q L, Bao B C, Hu Y H 2017 IEEE Access 5 21039

    [14]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [15]

    Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J 2015 Nonlinear Dyn. 81 215

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Bao B C, Jiang P, Wu H G, Hu F W 2015 Nonlinear Dyn. 79 2333

    [18]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcation Chaos 22 1250133

    [19]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurcation Chaos 21 2629

    [20]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [21]

    Zhao Y B, Zhang X Z, Xu J, Guo Y C 2015 Chaos, Solitons Fractals 81 315

    [22]

    Bao B C, Hu F W, Chen M, Xu Q, Yu Y J 2015 Int. J. Bifurcation Chaos 25 1550075

    [23]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [24]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [25]

    Wei Z C, Wang R R, Liu A P 2014 Math. Comput. Simulat. 100 13

    [26]

    Bao B C, Wu H G, Xu L, Chen M, Hu W 2018 Int. J. Bifurcation Chaos 28 1850019

    [27]

    Richter H 2008 Chaos, Solitons Fractals 36 559

    [28]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

    [29]

    Bao H, Wang N, Wu H G, Song Z, Bao B C 2018 IETE Tech. Rev. 6 1

    [30]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607

    [31]

    Chen M, Sun M X, Bao B C, Wu H G, Xu Q, Wang J 2018 Nonlinear Dyn. 91 1395

    [32]

    Morfu S, Nofiele B, Marquié P 2007 Phys. Lett. A 367 192

    [33]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [34]

    Chua L O 2012 Proc. IEEE 100 1920

    [35]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275

    [36]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711

    [37]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

  • [1] Lü Yan-Min, Min Fu-Hong. Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array. Acta Physica Sinica, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [2] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [3] Ma Mei-Ling, Min Fu-Hong, Shao Shu-Yi, Huang Miao-Yu. Chaotic synchronization control of Chua’s circuit by injected feedback based on the symbolic function. Acta Physica Sinica, 2014, 63(1): 010507. doi: 10.7498/aps.63.010507
    [4] Zhang Xin-Guo, Sun Hong-Tao, Zhao Jin-Lan, Liu Ji-Zhao, Ma Yi-De, Han Ting-Wu. Equivalent circuit in function and topology to Chua’s circuit and the design methods of these circuits. Acta Physica Sinica, 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [5] Chen Hong, Wu Ling. Design and implementation of an arbitrary poincare plane section circuit in three-dimensional space. Acta Physica Sinica, 2013, 62(2): 020507. doi: 10.7498/aps.62.020507
    [6] Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng. Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model. Acta Physica Sinica, 2013, 62(1): 010503. doi: 10.7498/aps.62.010503
    [7] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [8] Dong Li-Fang, Bai Zhan-Guo, He Ya-Feng. Sparse and dense spiral waves in heterogeneous excitable media. Acta Physica Sinica, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [9] Yu Yue, Zhang Chun, Han Xiu-Jing, Bi Qin-Sheng. Oscillations and their mechanism of compound system with periodic switches between two subsystems. Acta Physica Sinica, 2012, 61(20): 200507. doi: 10.7498/aps.61.200507
    [10] Chen Shi-Bi, Zeng Yi-Cheng, Xu Mao-Lin, Chen Jia-Sheng. Construction of grid multi-scroll chaotic attractors and its circuit implementation with polynomial and step function. Acta Physica Sinica, 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [11] Yang Zhi-Min, Zhang Jie, Ma Yong-Jie, Bai Yu-Long, Ma Sheng-Qian. Design and realization of Chua’s circuit based on current conveyers. Acta Physica Sinica, 2010, 59(5): 3007-3016. doi: 10.7498/aps.59.3007
    [12] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping. Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [13] Shi Hua-Ping, Ke Jian-Hong, Sun Ce, Lin Zhen-Quan. Rules of the population distribution of China and its evolution mechanism. Acta Physica Sinica, 2009, 58(1): 1-8. doi: 10.7498/aps.58.1.1
    [14] Feng Chao-Wen, Cai Li, Kang Qiang. Study of chaos based on single electron device. Acta Physica Sinica, 2008, 57(10): 6155-6161. doi: 10.7498/aps.57.6155
    [15] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit simulation. Acta Physica Sinica, 2007, 56(4): 1966-1970. doi: 10.7498/aps.56.1966
    [16] A hyperchaotic system and its fractional order circuit simulation. Acta Physica Sinica, 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [17] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit emulation. Acta Physica Sinica, 2006, 55(8): 3933-3937. doi: 10.7498/aps.55.3933
    [18] Li Ya, Yu Si-Min, Dai Qing-Yun, Liu Ming-Hua, Liu Qing. A novel approach for Chua’s circuit design and its hardware implementation. Acta Physica Sinica, 2006, 55(8): 3938-3944. doi: 10.7498/aps.55.3938
    [19] Li Jian-Fen, Li Nong, Lin Hui. Secure communication method for fast-varying information signal based on chaotic modulation. Acta Physica Sinica, 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [20] FENG PEI-CHENG, TANG YI. A SINGULAR PERTURBATION THEORY FOR THE STUDY OF NEWTONIAN DYNAMICAL BEHAVIOUR OF KINK. Acta Physica Sinica, 2001, 50(7): 1213-1216. doi: 10.7498/aps.50.1213
Metrics
  • Abstract views:  6692
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2018
  • Accepted Date:  29 August 2018
  • Published Online:  05 December 2018

/

返回文章
返回