Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of pure quartic soliton fiber laser

Luo Min Zhang Ze-Xian Chen Nai-Miao Liu Meng Luo Ai-Ping Xu Wen-Cheng Luo Zhi-Chao

Citation:

Research progress of pure quartic soliton fiber laser

Luo Min, Zhang Ze-Xian, Chen Nai-Miao, Liu Meng, Luo Ai-Ping, Xu Wen-Cheng, Luo Zhi-Chao
PDF
HTML
Get Citation
  • The pure-quartic soliton fiber laser is an innovative ultra-short pulse laser that can maintain a stable pulse shape through a balance between fourth-order dispersion effect and self-phase modulation effect. Comparing with traditional soliton laser that is dominated by second-order dispersion, the mode-locked pulse energy of pure-quartic soliton laser can be 1–2 orders of magnitude higher. This provides researchers with new ideas for developing high-energy and high-peak-power fiber lasers. Here, the generation and transmission characteristics of pure-quartic solitons in nonlinear optical systems such as fiber lasers in recent years are systematically reviewed. It also explores some special transient dynamic phenomena. Furthermore, in this article, the latest achievements of our research group in this area are also presented. Finally, the application prospect and development trend of pure-quartic soliton fiber lasers are prospected. These results will contribute to a more comprehensive understanding of the basic physical properties of pure-quartic soliton fiber lasers.
      Corresponding author: Luo Zhi-Chao, zcluo@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874018, 11974006, 61805084, 61875058) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2022A1515011760, 2021A1515012315).
    [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [2]

    Yi X, Yang Q F, Yang K Y, Suh M G, Vahala K 2015 Optica 2 1078Google Scholar

    [3]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [4]

    Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58Google Scholar

    [5]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [6]

    Xu C, Wise F W 2013 Nat. Photonics 7 875Google Scholar

    [7]

    Wang K, Horton N G, Charan K, Xu C 2014 IEEE J. Sel. Top. Quant. 20 50Google Scholar

    [8]

    Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar

    [9]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (Academic Press

    [10]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [11]

    Dennis M L, Duling I N 1994 IEEE J. Quantum Elect. 30 1469Google Scholar

    [12]

    Nelson L E, Jones D J, Tamura K, Haus H A, Ippen E P 1997 Appl. Phys. B 65 277Google Scholar

    [13]

    Shabat A, Zakharov V 1972 Sov. Phys. JETP 34 62

    [14]

    Renninger W H, Chong A, Wise F W 2010 J. Opt. Soc. Am. B 27 1978Google Scholar

    [15]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [16]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095Google Scholar

    [17]

    Blow K J, Doran N J, Wood D 1988 J. Opt. Soc. Am. B 5 381Google Scholar

    [18]

    Karlsson M, Höök A 1994 Opt. Commun. 104 303Google Scholar

    [19]

    Christov I P, Murnane M M, Kapteyn H C, Zhou J, Huang C P 1994 Opt. Lett. 19 1465Google Scholar

    [20]

    Piché M, Cormier J F, Zhu X 1996 Opt. Lett. 21 845Google Scholar

    [21]

    Roy S, Biancalana F 2013 Phys. Rev. A 87 025801Google Scholar

    [22]

    Blanco-Redondo A, de Sterke C M, Sipe J E, Krauss T F, Eggleton B J, Husko C 2016 Nat. Commun. 7 10427Google Scholar

    [23]

    Runge A F J, Hudson D D, Tam K K K, de Sterke C M, Blanco-Redondo A 2020 Nat. Photonics 14 492Google Scholar

    [24]

    de Sterke C M, Runge A F J, Hudson D D, Blanco-Redondo A 2021 APL Photonics 6 091101Google Scholar

    [25]

    Runge A F J, Alexander T J, Newton J, Alavandi P A, de Sterke C M 2020 Opt. Lett. 45 3365Google Scholar

    [26]

    Qian Z C, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Express 30 22066Google Scholar

    [27]

    Soto-Crespo J M, Akhmediev N, Ankiewicz A 2000 Phys. Rev. Lett. 85 2937Google Scholar

    [28]

    Akhmediev N, Soto-Crespo J M, Town G 2001 Phys. Rev. E 63 056602Google Scholar

    [29]

    Zhao L M, Tang D Y, Lin F, Zhao B 2004 Opt. Express 12 4573Google Scholar

    [30]

    Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar

    [31]

    Akhmediev N, Soto-Crespo J M 2003 Phys. Lett. A 317 287Google Scholar

    [32]

    Liu M, Luo A P, Yan Y R, Hu S, Liu Y C, Cui H, Luo Z C, Xu W C 2016 Opt. Lett. 41 1181Google Scholar

    [33]

    Luo M, Zhang Z X, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Express 30 22143Google Scholar

    [34]

    Luo M, Zhang Z X, Chen N M, Liu M, Luo A P, Xu W C, Luo Z C 2023 Adv. Phys. Res. 2 2200103Google Scholar

    [35]

    Aossey D W, Skinner S R, Cooney J L, Williams J E, Gavin M T, Andersen D R, Lonngren K E 1992 Phys. Rev. A 45 2606Google Scholar

    [36]

    Liu M, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photon. Rev. 14 1900317Google Scholar

    [37]

    Wai P K A, Chen H H, Lee Y C 1990 Phys. Rev. A 41 426Google Scholar

    [38]

    Kodama Y, Romagnoli M, Wabnitz S, Midrio M 1994 Opt. Lett. 19 165Google Scholar

    [39]

    Höök A, Karlsson M 1993 Opt. Lett. 18 1388Google Scholar

    [40]

    Karpman V I 1996 Phys. Rev. E 53 R1336Google Scholar

    [41]

    Roy S, Bhadra S K, Agrawal G P 2009 Opt. Commun. 282 3798Google Scholar

    [42]

    Blanco-Redondo A, Eades D, Li J, Lefrancois S, Krauss T F, Eggleton B J, Husko C 2014 Optica 1 299Google Scholar

    [43]

    Blanco-Redondo A, Husko C, Eades D, Zhang Y, Li J, Krauss T F, Eggleton B J 2014 Nat. Commun. 5 3160Google Scholar

    [44]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 142Google Scholar

    [45]

    Lo C W, Stefani A, de Sterke C M, Blanco-Redondo A 2018 Opt. Express 26 7786Google Scholar

    [46]

    Tam K K K, Alexander T J, Blanco-Redondo A, de Sterke C M 2019 Opt. Lett. 44 3306Google Scholar

    [47]

    Kelly S M J 1992 Electron. Lett. 28 806Google Scholar

    [48]

    Runge A F J, Qiang Y L, Alexander T J, Rafat M Z, Hudson D D, Blanco-Redondo A, de Sterke C M 2021 Phys. Rev. Res. 3 013166Google Scholar

    [49]

    Widjaja J, Kobakhidze E, Cartwright T R, Lourdesamy J P, Runge A F J, Alexander T J, de Sterke C M 2021 Phys. Rev. A 104 043526Google Scholar

    [50]

    Zhang Z X, Luo M, Chen J X, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Lett. 47 1750Google Scholar

    [51]

    Soto-Crespo J M, Grapinet M, Grelu P, Akhmediev N 2004 Phys. Rev. E 70 066612Google Scholar

    [52]

    Liu K W, Yao S Y, Yang C X 2021 Opt. Lett. 46 993Google Scholar

  • 图 1  纯四次孤子概念及其及实验证明[22] (a) 纯四次孤子原理图; (b) 频率分辨电开关; (c) 扫描电子显微镜下的样品图像; (d) 光子晶体波导的色散测量

    Figure 1.  Concept of pure-quartic solitons and their experimental demonstration[22]: (a) Schematic of pure-quartic solitons; (b) frequency-resolved electrical gating; (c) scanning electron microscopy image of the sample; (d) measured dispersion of the photonic crystal waveguides.

    图 2  不同输入功率下的频域和时域结果(红色虚线为实验结果, 蓝色实线为模拟结果)[22]

    Figure 2.  Frequency domain and time domain results at different input powers (the red dashed line is the experimental result, and the solid blue line is the simulation result)[22].

    图 3  纯四次孤子输出特性 (a) 线性坐标下的时域脉冲; (b) 对数坐标下的时域脉冲; (c) 线性坐标下的频域光谱; (d) 对数坐标下的频域光谱(红色为常规孤子光谱)[46]

    Figure 3.  Output characteristics of pure-quartic solitons: (a) Time domain pulses at linear coordinates; (b) time domain pulses at logarithmic coordinates; (c) frequency domain spectrum in linear coordinates; (d) frequency domain spectrum in logarithmic coordinates (red is the spectrum of traditional soliton)[46].

    图 4  纯四次孤子光纤激光器原理示意图 (a) 实验装置图; (b) 二阶色散相位; (c)四阶色散相位[23]

    Figure 4.  Schematic diagram of pure-quartic fiber soliton laser: (a) Experimental setup; (b) second-order dispersion phases; (c) fourth-order dispersion phases[23].

    图 5  实验和模拟上的光谱和时域曲线 (a)—(d) 传统孤子; (e)—(h) 纯四次孤子[23]

    Figure 5.  Experimental (exp.) and simulated (sim.) spectra and time-domain curves: (a)–(d) Conventional solitons; (e)–(h) pure-quartic solitons[23].

    图 6  自相似纯四次孤子激光器 (a) 模拟结构图; (b)时域曲线; (c) 频域曲线[25]

    Figure 6.  Self-similar pure-quartic soliton laser: (a) Simulation structure diagram; (b) time domain curves; (c) frequency domain curves[25]

    图 7  耗散纯四次孤子[26] (a) 线性与对数坐标下的光谱; (b) 脉冲和啁啾; (c), (d) 1000圈下的频域和时域演化

    Figure 7.  Dissipative pure-quartic solitons[26]: (a) Spectrum with log and linear coordinates; (b) pulse and chirp; (c), (d) evolution of frequency domain and time domain with 1000 roundtrips.

    图 8  非对称“M”型耗散纯四次孤子[26] (a) 线性与对数坐标下的光谱; (b) 脉冲(蓝色)和啁啾(红色); (c), (d) 1000圈下的频域和时域演化

    Figure 8.  Asymmetric “M” type dissipative pure-quartic solitons[26]: (a) Spectrum with log and linear coordinates; (b) pulse (blue) and chirp (red); (c), (d) evolution of frequency domain and time domain with 1000 roundtrips.

    图 9  纯高阶色散孤子六次色散(上行)、八次色散(中行)和十次色散(下行)的频域和时域测量 (a)—(c) 测量光谱(蓝色)和计算光谱(红色虚线); (d)—(f) 频谱图; (g)—(i) 时域强度(蓝色)、相位(橙色)以及相应的计算时域形状(红色虚线)[48]

    Figure 9.  Spectral and temporal measurements of pure high-order dispersion solitons sextic (top row), octic (middle row), and decic (bottom row) dispersion: (a)–(c) Measured (blue) and calculated (red-dashed) spectrum; (d)–(f) spectrograms; (g)–(i) temporal intensity (blue), phase (orange), and corresponding calculated temporal shapes (red-dashed)[48].

    图 10  纯四次孤子在不同初始相位差条件下碰撞动力学[49]

    Figure 10.  Collision dynamics of pure-quartic solitons with different initial phase differences[49].

    图 11  纯四次孤子的脉动状态[50] (a) 时域的演化(插图为纯四次孤子中心部分(绿色)和振荡尾(白色)的能量演化); (b)光谱域的演化

    Figure 11.  Pulsation state of pure-quartic solitons[50]: (a) Evolution of the time domain(energy evolution of the pure quadruple soliton center (green) and oscillating tail (white)); (b) evolution of the spectral domain.

    图 12  (a) 具有不同饱和能量值的纯四次孤子的归一化峰值强度演化; (b), (c) 不同饱和能量下脉冲的两个典型分布[50]

    Figure 12.  (a) Normalized peak intensity evolution of pure-quartic solitons with different saturation energy values; (b), (c) two typical pulse distributions under different saturated energies[50].

    图 13  (a) 拉曼效应下纯四次孤子的峰值功率(黑点)与泵浦功率(红色虚线)的关系(呼吸状态由灰色区域显示); (b) 稳定状态(泵浦功率为1 W, 6 W)和 (c) 呼吸状态(泵浦功率为4 W)的时域脉冲及其相应相位(红线); (d) 4 W泵浦功率下拉曼纯四次孤子呼吸的典型频谱; (e) 呼吸状态谱能量演化(白色虚线表示不同段的光谱能量峰值)[52]

    Figure 13.  (a)The relationship between peak power (black dot) and pump power (red dashed line) of Raman pure-quartic solitons (the breathing state is shown by the gray area); (b) time domain pulses in stable state (pump powers are 1 W and 6 W) and (c) breathing state (pump power is 4 W) and corresponding phases (red line); (d) typical breathing spectrum of Raman pure-quartic solitons at pump power of 4 W; (e) energy evolution of the breathing spectrum (the white dotted lines indicate the spectral energy peaks in different segments)[52].

  • [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [2]

    Yi X, Yang Q F, Yang K Y, Suh M G, Vahala K 2015 Optica 2 1078Google Scholar

    [3]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [4]

    Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58Google Scholar

    [5]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [6]

    Xu C, Wise F W 2013 Nat. Photonics 7 875Google Scholar

    [7]

    Wang K, Horton N G, Charan K, Xu C 2014 IEEE J. Sel. Top. Quant. 20 50Google Scholar

    [8]

    Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar

    [9]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (Academic Press

    [10]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [11]

    Dennis M L, Duling I N 1994 IEEE J. Quantum Elect. 30 1469Google Scholar

    [12]

    Nelson L E, Jones D J, Tamura K, Haus H A, Ippen E P 1997 Appl. Phys. B 65 277Google Scholar

    [13]

    Shabat A, Zakharov V 1972 Sov. Phys. JETP 34 62

    [14]

    Renninger W H, Chong A, Wise F W 2010 J. Opt. Soc. Am. B 27 1978Google Scholar

    [15]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [16]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095Google Scholar

    [17]

    Blow K J, Doran N J, Wood D 1988 J. Opt. Soc. Am. B 5 381Google Scholar

    [18]

    Karlsson M, Höök A 1994 Opt. Commun. 104 303Google Scholar

    [19]

    Christov I P, Murnane M M, Kapteyn H C, Zhou J, Huang C P 1994 Opt. Lett. 19 1465Google Scholar

    [20]

    Piché M, Cormier J F, Zhu X 1996 Opt. Lett. 21 845Google Scholar

    [21]

    Roy S, Biancalana F 2013 Phys. Rev. A 87 025801Google Scholar

    [22]

    Blanco-Redondo A, de Sterke C M, Sipe J E, Krauss T F, Eggleton B J, Husko C 2016 Nat. Commun. 7 10427Google Scholar

    [23]

    Runge A F J, Hudson D D, Tam K K K, de Sterke C M, Blanco-Redondo A 2020 Nat. Photonics 14 492Google Scholar

    [24]

    de Sterke C M, Runge A F J, Hudson D D, Blanco-Redondo A 2021 APL Photonics 6 091101Google Scholar

    [25]

    Runge A F J, Alexander T J, Newton J, Alavandi P A, de Sterke C M 2020 Opt. Lett. 45 3365Google Scholar

    [26]

    Qian Z C, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Express 30 22066Google Scholar

    [27]

    Soto-Crespo J M, Akhmediev N, Ankiewicz A 2000 Phys. Rev. Lett. 85 2937Google Scholar

    [28]

    Akhmediev N, Soto-Crespo J M, Town G 2001 Phys. Rev. E 63 056602Google Scholar

    [29]

    Zhao L M, Tang D Y, Lin F, Zhao B 2004 Opt. Express 12 4573Google Scholar

    [30]

    Liu M, Wei Z W, Li H, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photonics Rev. 14 1900317Google Scholar

    [31]

    Akhmediev N, Soto-Crespo J M 2003 Phys. Lett. A 317 287Google Scholar

    [32]

    Liu M, Luo A P, Yan Y R, Hu S, Liu Y C, Cui H, Luo Z C, Xu W C 2016 Opt. Lett. 41 1181Google Scholar

    [33]

    Luo M, Zhang Z X, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Express 30 22143Google Scholar

    [34]

    Luo M, Zhang Z X, Chen N M, Liu M, Luo A P, Xu W C, Luo Z C 2023 Adv. Phys. Res. 2 2200103Google Scholar

    [35]

    Aossey D W, Skinner S R, Cooney J L, Williams J E, Gavin M T, Andersen D R, Lonngren K E 1992 Phys. Rev. A 45 2606Google Scholar

    [36]

    Liu M, Li T J, Luo A P, Xu W C, Luo Z C 2020 Laser Photon. Rev. 14 1900317Google Scholar

    [37]

    Wai P K A, Chen H H, Lee Y C 1990 Phys. Rev. A 41 426Google Scholar

    [38]

    Kodama Y, Romagnoli M, Wabnitz S, Midrio M 1994 Opt. Lett. 19 165Google Scholar

    [39]

    Höök A, Karlsson M 1993 Opt. Lett. 18 1388Google Scholar

    [40]

    Karpman V I 1996 Phys. Rev. E 53 R1336Google Scholar

    [41]

    Roy S, Bhadra S K, Agrawal G P 2009 Opt. Commun. 282 3798Google Scholar

    [42]

    Blanco-Redondo A, Eades D, Li J, Lefrancois S, Krauss T F, Eggleton B J, Husko C 2014 Optica 1 299Google Scholar

    [43]

    Blanco-Redondo A, Husko C, Eades D, Zhang Y, Li J, Krauss T F, Eggleton B J 2014 Nat. Commun. 5 3160Google Scholar

    [44]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 142Google Scholar

    [45]

    Lo C W, Stefani A, de Sterke C M, Blanco-Redondo A 2018 Opt. Express 26 7786Google Scholar

    [46]

    Tam K K K, Alexander T J, Blanco-Redondo A, de Sterke C M 2019 Opt. Lett. 44 3306Google Scholar

    [47]

    Kelly S M J 1992 Electron. Lett. 28 806Google Scholar

    [48]

    Runge A F J, Qiang Y L, Alexander T J, Rafat M Z, Hudson D D, Blanco-Redondo A, de Sterke C M 2021 Phys. Rev. Res. 3 013166Google Scholar

    [49]

    Widjaja J, Kobakhidze E, Cartwright T R, Lourdesamy J P, Runge A F J, Alexander T J, de Sterke C M 2021 Phys. Rev. A 104 043526Google Scholar

    [50]

    Zhang Z X, Luo M, Chen J X, Liu M, Luo A P, Xu W C, Luo Z C 2022 Opt. Lett. 47 1750Google Scholar

    [51]

    Soto-Crespo J M, Grapinet M, Grelu P, Akhmediev N 2004 Phys. Rev. E 70 066612Google Scholar

    [52]

    Liu K W, Yao S Y, Yang C X 2021 Opt. Lett. 46 993Google Scholar

  • [1] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [3] Ying Yao-Jun, Li Hai-Bin. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [4] Yang Ya-Tao, Zou Yuan, Zeng Qiong, Song Yu-Feng, Wang Ke, Wang Zhen-Hong. Mode-locked fiber laser with coexistence of m ultiple solitons and noise-like pulses. Acta Physica Sinica, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [5] Gao Yi-Wen, Wang Ying, Tian Wen-De, Chen Kang. Dynamic behavior of active polymer chain in spatially-modulated driven field. Acta Physica Sinica, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [6] Zhao Chang, Huang Qian-Qian, Huang Zi-Nan, Dai Li-Long, Sergeyev Sergey, Rozhin Aleksey, Mou Cheng-Bo. Experimental study on dissipative soliton fiber laser with dynamically tunable polarization trajectory. Acta Physica Sinica, 2020, 69(18): 184218. doi: 10.7498/aps.69.20201305
    [7] Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li. Stress measurement based on 1556 nm fiber laser frequency splitting effect. Acta Physica Sinica, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [8] Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting. Research on a six-order chaotic circuit with three memristors. Acta Physica Sinica, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [9] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [10] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [11] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [12] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Chen Li. Effect of output capacitance time-constant on dynamic characteristics of V2-controlled buck converter. Acta Physica Sinica, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [13] Xie Chen, Hu Ming-Lie, Zhang Da-Peng, Chai Lu, Wang Qing-Yue. High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell. Acta Physica Sinica, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [14] Zhou Rui, Zhang Jing, Hu Man-Li, Feng Zhong-Yao, Gao Hong, Yang Yang, Zhang Jing-Hua, Qiao Xue-Guang. A vibration detection system based on two-stage polarization maintaining fiber Sagnac loop fiber laser. Acta Physica Sinica, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [15] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [16] Li Li, Zhang Xin-Lu, Chen Li-Xue. Study on intrinsic optical bistability in Tm-doped laser crystal pumped at 648nm avalanche wavelength. Acta Physica Sinica, 2008, 57(1): 278-284. doi: 10.7498/aps.57.278
    [17] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [18] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] Chen Yong-Zhu, Li Yu-Zhong, Qu Gui, Xu Wen-Cheng. Numerical research of flat wideband supercontinuum generation in anomalous dispersion-flattened fibers. Acta Physica Sinica, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [20] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
Metrics
  • Abstract views:  5099
  • PDF Downloads:  418
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2023
  • Accepted Date:  28 June 2023
  • Available Online:  13 July 2023
  • Published Online:  20 October 2023

/

返回文章
返回