Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on pulsation and energy characteristics of bubbles produced by underwater electrical explosion

Zhou Shao-Tong Mo Teng-Fu Ren Xiao-Dong Xu Qiang Sun Qi-Zhi Zhang Si-Qun Huang Xian-Bin Zhang Zhao-Hui Liu Wen-Yan

Citation:

Experimental study on pulsation and energy characteristics of bubbles produced by underwater electrical explosion

Zhou Shao-Tong, Mo Teng-Fu, Ren Xiao-Dong, Xu Qiang, Sun Qi-Zhi, Zhang Si-Qun, Huang Xian-Bin, Zhang Zhao-Hui, Liu Wen-Yan
cstr: 32037.14.aps.73.20240720
PDF
HTML
Get Citation
  • Low-frequency hysteresis flow and pulsating pressure caused by underwater explosion bubbles can cause overall damage to ships. The hydrodynamic and energy conversion of bubbles are very important in studying underwater explosion bubbles. At present the study of bubble dynamics is based on ideal gas hypothesis, which does not involve heat exchange and is only suitable for bubbles of chemical detonating, but not for bubbles at higher temperatures. The evolution of underwater explosion bubbles is studied experimentally by underwater exploding wire. There is obvious heat exchange during the evolution of bubbles, which is different from bubble behavior in chemical detonating underwater. This study focuses on pulsating behavior and energy characteristic of bubbles, and the difference from chemical detonating as well. The experimental facility is mainly composed of two parallel energy storage-discharge modules and a water tank. Each module is composed of two 20 μF capacitors connected and a gas switch connected in series with these two capacitors. A copper wire with a diameter of 0.9 mm and a length of 50 mm is used as a load. The experimental results show that the deposited energy density generated by electric explosion is almost equal to that of TNT. The wire plasma expansion produces an initial bubble with temperature of radially spatial distribution. The total pulsation frequency of bubble will not exceed 4 times. After energy exhaustion, bubbles collapse directly into water because the main component is condensable gas. The comparison of the experimental data with the existing theoretical models shows that the vaporization of water in bubble expansion stage leads to certain energy loss, which makes difference in motion trajectory of bubbles between the simulation and the experiment. This study provides ideas and data support for the dynamical study of high temperature bubbles in underwater explosion.
      Corresponding author: Liu Wen-Yan, s108liuwy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305263, 12075225).
    [1]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [2]

    Cole R H 1948 Underwater Explosion (Princeton: Princeton University Press

    [3]

    Plesset M 1949 J. Appl. Mech. 16 277Google Scholar

    [4]

    Gilmore F 1952 The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid (Pasadena: Hydrodynamics Laboratory California Institute of Technology) Tech. Report No. 26-4

    [5]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [6]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [7]

    Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289Google Scholar

    [8]

    Best J 1991 Ph. D. Dissertation (Wollongong: University of Wollongong

    [9]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584Google Scholar

    [10]

    姚熊亮, 汪玉, 张阿漫 2012 水下爆炸气泡动力学 (哈尔滨: 哈尔滨工程大学出版社)

    Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press

    [11]

    张阿漫, 姚熊亮 2008 物理学报 57 339Google Scholar

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339Google Scholar

    [12]

    张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672Google Scholar

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672Google Scholar

    [13]

    张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701Google Scholar

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701Google Scholar

    [14]

    叶曦, 姚熊亮, 张阿漫, 庞福振 2013 物理学报 62 114702Google Scholar

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702Google Scholar

    [15]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [16]

    Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323Google Scholar

    [17]

    张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139

    Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139

    [18]

    段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140Google Scholar

    Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140Google Scholar

    [19]

    Thomsen J M, Ruhl S F 1980 Mitigation of Explosion Bubble Pulsation Caused by the Deep Underwater Detonation of a Tapered Charge (Washington, D. C.: Director Defense Nuclear Agency) Phys. Int. Co. AD-A107804

    [20]

    Kriebel A R, Bechtel J S 1970 Hydro dynamic Data From Exploding Wires (Washington, D.C.: Office of Naval Research Department of the Navy) URS Res. Co. AD-706074

    [21]

    Buntzen R R 1962 The Use of Exploding Wires in the Study of Small-Scale Underwater Explosions (New York: Plenum Press) USRDL Tech. Report No. 195

    [22]

    Hege J S 1963 Hydra Program Determination of the Total Thermal Radiant Energy Emitted by an Underwater Exploding Wire (San Francisco: U.S. Naval Radiological Defense Laboratory) Def. Doc. Center AD-401342

    [23]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661Google Scholar

    [24]

    韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257

    Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. Eeletrotech. Soc. 32 257

    [25]

    吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003

    Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Eng. 44 4003

    [26]

    钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术 47 815

    Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Eng. 47 815

    [27]

    Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702Google Scholar

    [28]

    Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391Google Scholar

    [29]

    宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641Google Scholar

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641Google Scholar

    [30]

    Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta, Part B 206 106713Google Scholar

    [31]

    梁川, 章林文, 李欣 2004 强激光与粒子束 16 787

    Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beams 16 787

    [32]

    Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703Google Scholar

    [33]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B. Fluids 42 69Google Scholar

    [34]

    Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61Google Scholar

    [35]

    Wang Q X 2013 Phys. Fluids 25 072104Google Scholar

  • 图 1  (a)实验装置结构; (b)诊断布局

    Figure 1.  (a) Schematic of components of the experimental facility; (b) diagnostic setup.

    图 2  (a)实验装置等效电路; (b)装置短路放电的理论和实验电流、电压波形

    Figure 2.  (a) Equivalent circuit of the experimental facility; (b) the current and voltage curves of short circuit.

    图 3  (a)充电40 kV实验的实测电流、电压波形; (b)铜丝上的沉积功率、能量

    Figure 3.  (a) Experimental current and voltage waveforms at charging 40 kV; (b) deposited power and energy on copper wires.

    图 4  铜丝与电极的连接示意图

    Figure 4.  Schematic diagram of connection between copper wire and electrodes.

    图 5  (a)铜丝电离过程和(b)电爆炸全过程的典型电流和电阻电压波形

    Figure 5.  Typical current and resistive voltage waveforms of (a) Cu wire ionization and (b) electrical explosion process.

    图 6  不同充电条件下铜丝上的(a)电流、(b)功率、沉积能量和(c)等离子体体积及能量密度

    Figure 6.  (a) Current, (b) power, deposited energy, (c) plasma volume and energy density in different voltages.

    图 7  气泡产生阶段的演化图像

    Figure 7.  Evolution images of bubble generation.

    图 8  典型气泡脉动演化图像

    Figure 8.  Typical images of bubble pulsation.

    图 9  气泡脉动过程中周围流体的动能、势能以及气泡总能量的典型实验波形

    Figure 9.  Typical experimental waveforms of fluid kinetic energy, potential energy and bubble total energy.

    图 10  (a) RP理论模型在不同初始条件下的气泡膨胀轨迹模拟比较; (b)二种理论模型对气泡膨胀轨迹的模拟及与实验比较; (c)气泡质心垂直位移的实验与模拟结果比较

    Figure 10.  Experimental data and simulation results of (a) bubble expansion trajectory in different initial conditions of the RP theoretical model, (b) bubble expansion trajectory by two theoretical models and (c) vertical migration of bubble centroid.

  • [1]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [2]

    Cole R H 1948 Underwater Explosion (Princeton: Princeton University Press

    [3]

    Plesset M 1949 J. Appl. Mech. 16 277Google Scholar

    [4]

    Gilmore F 1952 The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid (Pasadena: Hydrodynamics Laboratory California Institute of Technology) Tech. Report No. 26-4

    [5]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [6]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [7]

    Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289Google Scholar

    [8]

    Best J 1991 Ph. D. Dissertation (Wollongong: University of Wollongong

    [9]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584Google Scholar

    [10]

    姚熊亮, 汪玉, 张阿漫 2012 水下爆炸气泡动力学 (哈尔滨: 哈尔滨工程大学出版社)

    Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press

    [11]

    张阿漫, 姚熊亮 2008 物理学报 57 339Google Scholar

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339Google Scholar

    [12]

    张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672Google Scholar

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672Google Scholar

    [13]

    张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701Google Scholar

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701Google Scholar

    [14]

    叶曦, 姚熊亮, 张阿漫, 庞福振 2013 物理学报 62 114702Google Scholar

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702Google Scholar

    [15]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [16]

    Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323Google Scholar

    [17]

    张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139

    Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139

    [18]

    段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140Google Scholar

    Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140Google Scholar

    [19]

    Thomsen J M, Ruhl S F 1980 Mitigation of Explosion Bubble Pulsation Caused by the Deep Underwater Detonation of a Tapered Charge (Washington, D. C.: Director Defense Nuclear Agency) Phys. Int. Co. AD-A107804

    [20]

    Kriebel A R, Bechtel J S 1970 Hydro dynamic Data From Exploding Wires (Washington, D.C.: Office of Naval Research Department of the Navy) URS Res. Co. AD-706074

    [21]

    Buntzen R R 1962 The Use of Exploding Wires in the Study of Small-Scale Underwater Explosions (New York: Plenum Press) USRDL Tech. Report No. 195

    [22]

    Hege J S 1963 Hydra Program Determination of the Total Thermal Radiant Energy Emitted by an Underwater Exploding Wire (San Francisco: U.S. Naval Radiological Defense Laboratory) Def. Doc. Center AD-401342

    [23]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661Google Scholar

    [24]

    韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257

    Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. Eeletrotech. Soc. 32 257

    [25]

    吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003

    Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Eng. 44 4003

    [26]

    钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术 47 815

    Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Eng. 47 815

    [27]

    Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702Google Scholar

    [28]

    Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391Google Scholar

    [29]

    宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641Google Scholar

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641Google Scholar

    [30]

    Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta, Part B 206 106713Google Scholar

    [31]

    梁川, 章林文, 李欣 2004 强激光与粒子束 16 787

    Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beams 16 787

    [32]

    Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703Google Scholar

    [33]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B. Fluids 42 69Google Scholar

    [34]

    Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61Google Scholar

    [35]

    Wang Q X 2013 Phys. Fluids 25 072104Google Scholar

  • [1] Zhao Chang, Ji Xian-Bing, Yang Yu-Hao, Meng Yu-Hang, Xu Jin-Liang, Peng Jia-Lue. Behavior characteristics of Janus particles impacting bubbles. Acta Physica Sinica, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [2] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium. Acta Physica Sinica, 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [3] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. Study on coupling characteristics between bubble and complex walls at the same scale. Acta Physica Sinica, 2014, 63(17): 174701. doi: 10.7498/aps.63.174701
    [4] Li Shuai, Zhang A-Man. Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [5] Wang Shu-Shan, Li Mei, Ma Feng. Dynamics of the interaction between explosion bubble and free surface. Acta Physica Sinica, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [6] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Study on bubble dynamics near plate with hole based on boundary element method. Acta Physica Sinica, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [7] Ni Bao-Yu, Li Shuai, Zhang A-Man. Jet splitting after bubble breakup at the free surface. Acta Physica Sinica, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [8] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [9] Li Shuai, Zhang A-Man, Wang Shi-Ping. Experimental and numerical studies on “crown” spike generated by a bubble near free-surface. Acta Physica Sinica, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [10] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Wu Chao. Experimental research on bubble dynamics near circular hole of plate. Acta Physica Sinica, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [11] Zhang A-Man, Xiao Wei, Wang Shi-Ping, Cheng Xiao-Ou. Experimental study of the interactions between a pulsating bubble and sand particles with different diameters. Acta Physica Sinica, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [12] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] Wu Wei, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [15] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Research on interaction between bubble and surface waves based on BEM. Acta Physica Sinica, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [16] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Yao Xiong-Liang. Numerical simulation of bubbles coupled with an elastic membrane. Acta Physica Sinica, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [17] Zhang A-Man, Yao Xiong-Liang. The law of the bubble motion near the wall. Acta Physica Sinica, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [18] Jiang Dan, Li Song-Jing, Bao Gang. Parameter identification of gas bubble model in pressure pulsations using genetic algorithms. Acta Physica Sinica, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [19] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [20] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
Metrics
  • Abstract views:  185
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2024
  • Accepted Date:  12 November 2024
  • Available Online:  21 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回