Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on nonlinear acoustic fields in multi-layer biological tissue with ribs as strong acoustic absorbers

WANG Haoyu LAI Ninglei YAN Zhangping LIN Weijun LIU Xiaozhou

Citation:

Research on nonlinear acoustic fields in multi-layer biological tissue with ribs as strong acoustic absorbers

WANG Haoyu, LAI Ninglei, YAN Zhangping, LIN Weijun, LIU Xiaozhou
cstr: 32037.14.aps.74.20241448
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • During the treatment of subcostal lesions with high intensity focused ultrasound (HIFU), the obstruction by the ribs significantly affects the therapeutic effect, which can be assessed through numerical calculations. In existing studies, ribs are typically regarded as perfect acoustic absorbers, and even though this assumption could reveal the influence of the ribs on the acoustic field to some extent, it may still underestimate the energy behind the rib cage. In order to address the shortcomings of current work, an innovative numerical calculation method that avoids treating ribs as perfect sound absorbers is proposed in this work. Subsequently, experiments are conducted using ABS plastic rib cage mimic to compare the effectiveness between the two methods, demonstrating that the method proposed in this paper, which avoids the assumption of considering ribs as perfect acoustic absorbers, could better reveal the influence caused by ribs, and further studies are carried out on the influence of ribs in a multi-layered medium model. In response to the numerical oscillation issues encountered in existing work when dealing with media with high acoustic attenuation coefficients, the operator splitting method to enhance the stability of numerical calculations is adopted in this work. Furthermore, to tackle the challenges posed by asymmetric acoustic fields in numerical computations, in this paper matrix vectorization technique is introduced and stable solutions for the acoustic field under the backward implicit difference scheme are obtained. Additionally, when considering nonlinear effects, an asymptotic maximum number of harmonics is employed to reduce the computational load. These improvements in both the numerical calculation model and the corresponding algorithm not only enhance the precision of numerical computations, but also reveal the underestimation of energy behind the ribs due to the assumption of perfect acoustic absorbers, which is significant for optimizing HIFU treatment strategies.
      Corresponding author: LIU Xiaozhou, xzliu@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0211400), the Key Program of the National Natural Science Foundation of China (Grant No. 11834008), the National Natural Science Foundation of China (Grant No. 12174192), the State Key Laboratory of Acoustics, Chinese Academy of Science (Grant No. SKLA202410), and the Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701).
    [1]

    Guang Z L P, Kristensen G, Røder A, Brasso K 2024 Clin. Genitourin. Cancer 22 102101Google Scholar

    [2]

    Schaudinn A, Michaelis J, Franz T, et al. 2021 Eur. J. Radiol. 144 109957Google Scholar

    [3]

    蔡忠林, 刘强照, 王朝阳, 李慧, 周逢海 2017 现代肿瘤医学 25 2011Google Scholar

    Cai Z L, Liu Q Z, Wang C Y, Li H, Zhou F H 2017 Mod. Oncol. 25 2011Google Scholar

    [4]

    Zhang P, Xie L, Chen J, Zhan P, Xing H R, Yuan Y 2024 Ultrasound Med. Biol. 50 1381Google Scholar

    [5]

    Fan H J, Cun J P, Zhao W, Huang J Q, Yi G F, Yao R H, Gao B L, Li X H 2018 Int. J. Hyperthermia 35 534Google Scholar

    [6]

    姚一静, 姜立新 2021 声学技术 40 376Google Scholar

    Yao Y J, Jiang L X 2021 Tech. Acoust. 40 376Google Scholar

    [7]

    Imankulov S B, Fedotovskikh G V, Shaimardanova G M, Yerlan M, Zhampeisov N K 2015 Ultrason. Sonochem. 27 712Google Scholar

    [8]

    Dupré A, Melodelima D, Cilleros C, De Crignis L, Peyrat P, Vincenot J, Rivoire M 2023 IRBM 44 100738Google Scholar

    [9]

    Li J L, Liu X Z, Zhang D, Gong X F 2007 Ultrasound Med. Biol. 33 1413Google Scholar

    [10]

    Yuldashev P V, Shmeleva S M, Ilyin S A, Sapozhnikov O A, Gavrilov L R, Khokhlova V A 2013 Phys. Med. Biol. 58 2537Google Scholar

    [11]

    Lin J X, Liu X Z, Gong X F, Ping Z H, Wu J R 2013 J. Acoust. Soc. Am. 134 1702Google Scholar

    [12]

    Kamakura T, Ishiwata T, Matsuda K 2000 J. Acoust. Soc. Am. 107 3035Google Scholar

    [13]

    Wang X, Lin J, Liu X J, Liu J Z, Gong X F 2016 Chin. Phys. B 25 044301Google Scholar

    [14]

    Zhao Y S, Gan Y, Long Y P, Sun F J, Fan X H 2024 Appl. Acoust. 216 109740Google Scholar

    [15]

    de Greef M, Schubert G, Wijlemans J W, Koskela J, Bartels L W, Moonen C T W, Ries M 2015 Med. Phys. 42 4685Google Scholar

    [16]

    Liu H L, Chang H, Chen W S, Shih T C, Hsiao J K, Lin W L 2007 Med. Phys. 34 3436Google Scholar

    [17]

    Liu H L, Hsu C L, Huang S M, Hsi Y W 2010 Med. Phys. 37 848Google Scholar

    [18]

    Sapareto S A, Dewey W C 1984 Int. J. Radiat. Oncol. Biol. Phys. 10 787Google Scholar

    [19]

    Cao R, Huang Z, Nabi G, Melzer A 2020 J. Ultrasound Med. 39 883Google Scholar

    [20]

    Khokhlova V A, Souchon R, Tavakkoli J, Sapozhnikov O A, Cathignol D 2001 J. Acoust. Soc. Am. 110 95Google Scholar

    [21]

    Fan T B, Liu Z B, Zhang Z, Zhang D, Gong X F 2009 Chin. Phys. Lett. 26 084302Google Scholar

    [22]

    Wear K A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 454Google Scholar

    [23]

    钱盛友, 王鸿樟 2001 物理学报 50 501Google Scholar

    Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501Google Scholar

    [24]

    Khokhlova V, Shmeleva S, Gavrilov L 2010 Acoust. Phys. 56 665Google Scholar

  • 图 1  椭球系示意图

    Figure 1.  Illustration of the oblate spheroidal coordinate system.

    图 2  球面波区域与平面波区域划分示意图

    Figure 2.  Illustration of the division between spherical wave region and plane wave region.

    图 3  生物组织模型示意图 (a) 三维视图; (b) $ xz $截面图

    Figure 3.  Schematic diagram of the biological tissue model: (a) 3D-view; (b) $ xz $-section.

    图 4  实验环境示意图 (a) 声场扫描系统; (b) ABS塑料仿肋模型

    Figure 4.  Schematic diagram of the experimental environment: (a) Ultrasonic scanning system; (b) rib mimic made of ABS plastic.

    图 5  焦平面内声压峰峰值分布图 (a) $H\mathrm{_{FS}}= 64\; {\mathrm{mm}} $; (b) $H\mathrm{_{FS}}= 74\; {\mathrm{mm}} $; (c) $H\mathrm{_{FS}}= 84\; {\mathrm{mm}} $; (d) $H\mathrm{_{FS}}= 94\; {\mathrm{mm}} $

    Figure 5.  Distribution of peak-to-peak pressure in the focal plane: (a) $H\mathrm{_{FS}}= 64\; {\mathrm{mm}} $; (b) $H\mathrm{_{FS}}= 74\; {\mathrm{mm}} $; (c) $H\mathrm{_{FS}}= 84\; {\mathrm{mm}} $; (d) $H\mathrm{_{FS}}= 94\; {\mathrm{mm}} $

    图 6  $ H\mathrm{_{FS} = 70\; mm} $时基波振幅沿z轴的分布

    Figure 6.  Distribution of fundamental amplitude with $ H\mathrm{_{FS} = 70\; mm} $ along the z-axis.

    图 7  $ H\mathrm{_{FS} = 70 \;mm} $时热沉积速率在截面$ \varphi = 0 $内的分布 (a) $ x\mathrm{_c = 0\; mm} $; (b) $ x\mathrm{_c = 5 \;mm} $; (c) $ x\mathrm{_c = 10\; mm} $; (d) $ x\mathrm{_c = 15 \;mm} $

    Figure 7.  Distribution of heat deposition rate in the $ \varphi = 0 $ plane with $ H\mathrm{_{FS} = 70 \;mm} $: (a) $ x\mathrm{_c = 0 \;mm} $; (b) $ x\mathrm{_c = 5 \;mm} $; (c) $ x\mathrm{_c = 10\; mm} $; (d) $ x\mathrm{_c = 15\; mm} $.

    图 8  $ H\mathrm{_{FS}} $对最大热沉积速率的影响 (a) 完美吸声体模型; (b) 强吸声体模型

    Figure 8.  Maximum heat deposition rate corresponding to different $ H\mathrm{_{FS}} $: (a) Perfect acoustic absorber model; (b) strong acoustic absorber model.

    图 9  测温组织模型 (a) 定制容器; (b) 模型实物

    Figure 9.  Temperature measurement tissue model: (a) Customized container; (b) actual model.

    图 10  焦域的归一化温升随时间的变化情况

    Figure 10.  Normalized temperature variation in the focal region over time.

    表 1  数值计算中使用的介质声参数

    Table 1.  Acoustic parameters of the medium used in numerical computation.

    $ \rho/\left(\mathrm{kg \cdot m^{-3}} \right) $ $ c/\left(\mathrm{m\cdot s^{-1}} \right) $ $ \alpha/\left(\mathrm{Np\cdot {MHz}^{-\mu} \cdot m^{-1}} \right) $ μ β
    1000 1500 0.025 2 3.5
    脂肪 910 1430 9 1.15 10.5
    肋骨 1450 2350 90 1 0
    肝脏 1050 1596 4.5 1.13 6
    DownLoad: CSV

    表 2  $ H \mathrm{_{FS} = 70 \;mm} $时z轴上的声场参数

    Table 2.  Acoustic field’s parameters along the z-axis with $ H\mathrm{_{FS} = 70 \;mm} $.

    $ x\mathrm{_c/mm} $ Field Ref 0 5 10 15
    $ A\mathrm{_1}/p_0 $ 49.09 27.43 27.75 29.07 29.73
    $ A\mathrm{_2}/p_0 $ 26.02 10.21 10.13 10.22 10.26
    $ A\mathrm{_3}/p_0 $ 14.96 3.82 3.71 3.59 3.53
    $ z\mathrm{_1/mm} $ 179.60 180.99 180.90 179.42 179.37
    $ z\mathrm{_2/mm} $ 180.09 180.54 180.36 179.78 179.46
    $ z\mathrm{_3/mm} $ 180.32 180.90 180.68 179.96 179.60
    DownLoad: CSV

    表 3  $ H \mathrm{_{FS} = 70 \;mm} $时平面$ \sigma = 0 $内的声场参数

    Table 3.  Acoustic field’s parameters in the $ \sigma = 0 $ plane with $ H \mathrm{_{FS} = 70 \;mm} $.

    $ x\mathrm{_c/mm} $ Field Ref 0 5 10 15
    $ \mathrm{WX_{1, -6\;dB}/mm} $ 3.22 3.39 3.21 2.86 2.71
    $ \mathrm{WX_{2, -6\;dB}/mm} $ 1.90 1.91 1.83 1.62 1.53
    $ \mathrm{WX_{3, -6\; dB}/mm} $ 1.46 1.40 1.36 1.23 1.18
    $ \mathrm{WY_{1, -6\; dB}/mm} $ 3.22 3.12 3.13 3.23 3.27
    $ \mathrm{WY_{2, -6\; dB}/mm} $ 1.90 1.80 1.80 1.84 1.86
    $ \mathrm{WY_{3, -6\; dB}/mm} $ 1.46 1.39 1.39 1.39 1.39
    DownLoad: CSV
  • [1]

    Guang Z L P, Kristensen G, Røder A, Brasso K 2024 Clin. Genitourin. Cancer 22 102101Google Scholar

    [2]

    Schaudinn A, Michaelis J, Franz T, et al. 2021 Eur. J. Radiol. 144 109957Google Scholar

    [3]

    蔡忠林, 刘强照, 王朝阳, 李慧, 周逢海 2017 现代肿瘤医学 25 2011Google Scholar

    Cai Z L, Liu Q Z, Wang C Y, Li H, Zhou F H 2017 Mod. Oncol. 25 2011Google Scholar

    [4]

    Zhang P, Xie L, Chen J, Zhan P, Xing H R, Yuan Y 2024 Ultrasound Med. Biol. 50 1381Google Scholar

    [5]

    Fan H J, Cun J P, Zhao W, Huang J Q, Yi G F, Yao R H, Gao B L, Li X H 2018 Int. J. Hyperthermia 35 534Google Scholar

    [6]

    姚一静, 姜立新 2021 声学技术 40 376Google Scholar

    Yao Y J, Jiang L X 2021 Tech. Acoust. 40 376Google Scholar

    [7]

    Imankulov S B, Fedotovskikh G V, Shaimardanova G M, Yerlan M, Zhampeisov N K 2015 Ultrason. Sonochem. 27 712Google Scholar

    [8]

    Dupré A, Melodelima D, Cilleros C, De Crignis L, Peyrat P, Vincenot J, Rivoire M 2023 IRBM 44 100738Google Scholar

    [9]

    Li J L, Liu X Z, Zhang D, Gong X F 2007 Ultrasound Med. Biol. 33 1413Google Scholar

    [10]

    Yuldashev P V, Shmeleva S M, Ilyin S A, Sapozhnikov O A, Gavrilov L R, Khokhlova V A 2013 Phys. Med. Biol. 58 2537Google Scholar

    [11]

    Lin J X, Liu X Z, Gong X F, Ping Z H, Wu J R 2013 J. Acoust. Soc. Am. 134 1702Google Scholar

    [12]

    Kamakura T, Ishiwata T, Matsuda K 2000 J. Acoust. Soc. Am. 107 3035Google Scholar

    [13]

    Wang X, Lin J, Liu X J, Liu J Z, Gong X F 2016 Chin. Phys. B 25 044301Google Scholar

    [14]

    Zhao Y S, Gan Y, Long Y P, Sun F J, Fan X H 2024 Appl. Acoust. 216 109740Google Scholar

    [15]

    de Greef M, Schubert G, Wijlemans J W, Koskela J, Bartels L W, Moonen C T W, Ries M 2015 Med. Phys. 42 4685Google Scholar

    [16]

    Liu H L, Chang H, Chen W S, Shih T C, Hsiao J K, Lin W L 2007 Med. Phys. 34 3436Google Scholar

    [17]

    Liu H L, Hsu C L, Huang S M, Hsi Y W 2010 Med. Phys. 37 848Google Scholar

    [18]

    Sapareto S A, Dewey W C 1984 Int. J. Radiat. Oncol. Biol. Phys. 10 787Google Scholar

    [19]

    Cao R, Huang Z, Nabi G, Melzer A 2020 J. Ultrasound Med. 39 883Google Scholar

    [20]

    Khokhlova V A, Souchon R, Tavakkoli J, Sapozhnikov O A, Cathignol D 2001 J. Acoust. Soc. Am. 110 95Google Scholar

    [21]

    Fan T B, Liu Z B, Zhang Z, Zhang D, Gong X F 2009 Chin. Phys. Lett. 26 084302Google Scholar

    [22]

    Wear K A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 454Google Scholar

    [23]

    钱盛友, 王鸿樟 2001 物理学报 50 501Google Scholar

    Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501Google Scholar

    [24]

    Khokhlova V, Shmeleva S, Gavrilov L 2010 Acoust. Phys. 56 665Google Scholar

  • [1] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [2] Qian Jun, Xie Wei, Zhou Xiao-Wei, Tan Jian-Wen, Wang Zhi-Biao, Du Yong-Hong, Li Yan-Hao. Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal. Acta Physica Sinica, 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [3] Song Ren-Jie, Yuan Zi-Yan, Zhang Qi, Yu Jie, Xue Hong-Hui, Tu Juan, Zhang Dong. Method of spatiotemporally monitoring acoustic cavitation based on radio frequency signal entropy analysis. Acta Physica Sinica, 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [4] Liu Bei, Hu Wei-Peng, Zou Xiao, Ding Ya-Jun, Qian Sheng-You. Recognition of denatured biological tissue based on variational mode decomposition and multi-scale permutation entropy. Acta Physica Sinica, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [5] Guo Ge-Pu, Su Hui-Dan, Ding He-Ping, Ma Qing-Yu. Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography. Acta Physica Sinica, 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [6] Du Hong-Xiu, Wei Hong, Qin Yi-Xiao, Li Zhong-Hua, Wang Tong-Zun. Interpolating particle method for mechanical analysis of space axisymmetric components. Acta Physica Sinica, 2015, 64(10): 100204. doi: 10.7498/aps.64.100204
    [7] Geng Hao, Fan Ting-Bo, Zhang Zhe, Tu Juan, Guo Xia-Sheng, Li Fa-Qi, Zhang Dong. Tissue lesion induced by a spherical cavity transducer. Acta Physica Sinica, 2014, 63(4): 044301. doi: 10.7498/aps.63.044301
    [8] Zhao Wei-Qian, Tang Fang, Qiu Li-Rong, Liu Da-Li. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [9] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [10] Zhang Guo-Ting, Huang Jun-Jie, Alatancang. Eigen-vector expansion theorem of a class of operator matrices appearing in elasticity and applications. Acta Physica Sinica, 2012, 61(14): 140205. doi: 10.7498/aps.61.140205
    [11] Xu Feng, Lu Ming-Zhu, Wan Ming-Xi, Fang Fei. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [12] Liu Jun, Chen Xiao-Wei, Liu Jian-Sheng, Leng Yu-Xin, Zhu Yi, Dai Jun, Li Ru-Xin, Xu Zhi-Zhan. Properties of the propagation of negatively chirped femtosecond pulses in normally dispersive media. Acta Physica Sinica, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [13] Li Jun-Lun, Liu Xiao-Zhou, Zhang Dong, Gong Xiu-Fen. Influence of the barriers on the ultrasonic nonlinear field distribution. Acta Physica Sinica, 2006, 55(6): 2809-2814. doi: 10.7498/aps.55.2809
    [14] Chen Xiao-Wei, Liu Jun, Zhu Yi, Leng Yu-Xin, Ge Xiao-Chun, Li Ru-Xin, Xu Zhi-Zhan. Self-compression of high-intensity femtosecond laser pulses in air. Acta Physica Sinica, 2005, 54(8): 3665-3669. doi: 10.7498/aps.54.3665
    [15] Zhang Jie-Fang, Xu Chang-Zhi, He Bao-Gang. The variable separation approach and study on solving the variable-coefficient nonlinear Schr?dinger equation. Acta Physica Sinica, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [16] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [17] CHEN LI-LI. FORMALLY VARIABLE SEPARATION APPROACH AND NEW EXACT SOLUTIONS OF GENERALIZED HIROTA-SATSUMA EQUATIONS. Acta Physica Sinica, 1999, 48(12): 2149-2153. doi: 10.7498/aps.48.2149
    [18] LI XIAN-SHU, GAO YAN-QIU, CHEN ZHI-TIAN, FENG ZENG-YE. A MATRIX THEORY FOR OPTICAL PASSIVE RESONATORS (IN CYLINDRICAL COORDINATES) (II)——CALCULATION FOR AXIAL SYMMETRIC STABLE RESONATORS. Acta Physica Sinica, 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [19] XU ZHENG-YI, ZHANG AN-DONG, XU GANG, YANG HUA-GUANG, LI YIN-YUAN. QUASI-ELASTIC STRONG LIGHT SCATTERING IN α-LiIO3 SINGLE CRYSTALS INDUCED BY IONIC TRANSPORTATION. Acta Physica Sinica, 1982, 31(5): 615-622. doi: 10.7498/aps.31.615
    [20] . Acta Physica Sinica, 1965, 21(1): 231-234. doi: 10.7498/aps.21.231
Metrics
  • Abstract views:  527
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2024
  • Accepted Date:  08 December 2024
  • Available Online:  02 January 2025
  • Published Online:  20 February 2025

/

返回文章
返回