Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

shape coexistence and shell effect of medium mass nuclei

LIU Dong GUO Jianyou

Citation:

shape coexistence and shell effect of medium mass nuclei

LIU Dong, GUO Jianyou
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The atomic nucleus is an extremely complex quantum many-body system composed of nucleons, and its shape is determined by the number of nucleons and their interactions. The study of atomic nuclear shapes is one of the most fascinating topics in nuclear physics, providing rich insights into the microscopic details of nuclear structure. Physicists have observed significant shape coexistence phenomena and stable triaxial deformation in isotopes of Zn, Ge, Se, and Kr. This paper aims to delve deeper into the impact of shape coexistence and triaxiality on the ground-state properties of atomic nuclei, as well as to verify new magic numbers.
    We employed the density-dependent meson-exchange model within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory to systematically study the ground-state properties of even-even Zn, Ge, Se, and Kr isotopes with neutron numbers N=32-42. The calculated potential energy surfaces clearly demonstrate the presence of shape coexistence and triaxial characteristics in these isotopes. By analyzing the ground-state energy, deformation parameters, two-neutron separation energies, neutron radii, proton radii, and charge radii of the atomic nuclei, we discuss the closure of nuclear shells. Our results reveal that at N=32, there is a notable abrupt change in the two-neutron separation energies of 62Zn and 64Ge. At N=34, a significant decrease in the two-neutron separation energies of 68Se and 70Kr is observed, accompanied by an abrupt change in their charge radii. Meanwhile, at N=40, clear signs of shell closure are observed. the maximum specific binding energy may correlate with the emergence of spherical nuclear structures. The shell closure not only enhances nucleon binding energy but also suppresses nuclear deformation through symmetry constraints. Our findings support N=40 as a new magic number, and some results also suggest that N=32 and N=34 could be new magic numbers. Notably, triaxial deformation plays a crucial role here. Furthermore, we explore the potential correlation between triaxiality and shape coexistence on the ground-state properties of atomic nuclei and analyze the physical mechanisms underlying these changes.
    The discrepancies between current theoretical predictions and experimental data reflect limitations in modeling higher-order many-body correlations (e.g., three-nucleon forces) and highlight challenges in experimental measurements for extreme nuclear regions (including neutron-rich and near-proton-drip-line regions). Future studies could combine tensor force corrections, large-scale shell model calculations, and high-precision data from next-generation radioactive beam facilities (e.g., FRIB, HIAF) to clarify the interplay among nuclear force parameterization, proton-neutron balance, and emergent symmetries, thereby providing a more comprehensive theoretical framework for nuclear structure under extreme conditions.
  • [1]

    Singh P, Korten W, Hagen T W, Gorgen A, Grente L, Salsac M D, Farget F, Clément E, de France G, Braunroth T, Bruyneel B, Celikovic I, Delaune O, Dewald A, Dijon A 2018 Phys. Rev. Lett. 121 192501

    [2]

    Abusara H, Ahmad S 2017 Phys. Rev. C 96 064303

    [3]

    Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155

    [4]

    Norman E B, Drobizhev A, Gharibyan N, Gregorich K E, Kolomensky Yu G, Sammis B N, Scielzo N D, Shusterman J A, Thomas K J 2024 Phys. Rev. C 109 055501

    [5]

    Majola S N T, Shi Z, Song B Y, Li Z P, Zhang S Q, Bark R A, Sharpey-Schafer J F, Aschman D G, Bvumbi S P, Bucher T D, Cullen D M, Dinoko T S, Easton J E, Erasmus N, Greenlees P T 2019 Phys. Rev. C 100 044324

    [6]

    Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308

    [7]

    Hua H, Wu C Y, Cline D, Hayes A B, Teng R, Clark R M, Fallon P, Goergen A, Macchiavelli A O, Vetter K 2004 Phys. Rev. C 69 014317

    [8]

    Cwiok S, Heenen P H, Nazarewicz W 2005 Nature 433 705

    [9]

    Ayangeakaa A D, Janssens R V F, Wu C Y, Allmond J M, Wood J L, Zhu S, Albers M, Almaraz-Calderon S, Bucher B, Carpenter M P, Chiara C J, Cline D, Crawford H L, Harker J, Hayes A B, Hoffman C R, Kay B P, Kolos K, Korichi A 2016 Phys. Lett. B 754 254

    [10]

    Sheng Z Q, Guo J Y 2008 Acta Phys. Sin. 57 1557 (in Chinese) [圣宗强,郭建友 2008 物理学 57 1557]

    [11]

    Jiao P, Guo J Y, Fang X Z 2010 Acta Phys. Sin. 59 2369 (in Chinese) [焦朋,郭建友,方向正 2010 物理学报 59 2369]

    [12]

    Wang G, Fang X Z, Guo J Y 2012 Acta Phys. Sin. 61 102101 (in Chinese) [王刚,方向正,郭建友 2012 物理学报 61 102101]

    [13]

    Nomura K, Rodriguez-Guzman R, Robledo L M 2016 Phys. Rev. C 94 044314

    [14]

    Karim A, Siddiqui T A, Ahmad S 2022 Phys. At. Nucl. 85 588

    [15]

    Zhang X Y, Niu Z M, Sun W, Xia X W 2023 Phys. Rev. C 108 024310

    [16]

    Garcia-Ramos J E, Arias J M, Dukelsky J 2014 Phys. Lett. B 736 333

    [17]

    Tong H, Zhang C, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 [童红,张春梅,石筑一,汪红,倪绍勇 2010 物理学报 59 3136 ]

    [18]

    Bonatsos D, Assimakis I E, Minkov N, Martinou A 2017 Phys. Rev. C 95 064326

    [19]

    Zhi Q J 2011 Acta Phys. Sin. 60 052101 (in Chinese) [支启军 2011 物理学报60 052101]

    [20]

    Wu X H, Ren Z X, Zhao P W 2022 Phys. Rev. C 105 L031303

    [21]

    Gupta S, Bakshi R, Gupta S, Singh S, Bharti A, Bhat G H, Sheikh J A 2023 Eur. Phys. J. A 59 258

    [22]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp. 192 (in Chinese)[卢希庭,江栋兴,叶沿林 2000 原子核物理(北京:原子能出版社) 第192页]

    [23]

    Wienholtz F, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, George S, Herfurth F, Holt J D, Kowalska M, Kreim S, Lunney D, Manea V, Menendez J, Neidherr D, Rosenbusch M, Schweikhard L, Schwenk A, Simonis J, Stanja J, Wolf R N, Zuber K 2013 Nature 498 346

    [24]

    Steppenbeck D, Takeuchi S, Aoi N, Doornenbal P, Matsushita M, Wang H, Baba H, Fukuda N, Go S, Honma M, Lee J, Matsui K, Michimasa S, Motobayashi T, Nishimura D, Otsuka T, Sakurai H, Shiga Y, Soderstrom P A, Sumikama T, Suzuki H, Taniuchi R, Utsuno Y, Valiente-Dobon J J, Yoneda K 2013 Nature 502 207

    [25]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S, Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506

    [26]

    Liu J, Niu Y F, Long W H 2020 Phys. Lett. B 806 135524

    [27]

    Zhang W, Huang J K, Sun T T, Peng J, Zhang S Q 2024 Chin. Phys. C 48 104105

    [28]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193

    [29]

    Vretenar D, Afanasjev A V, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101

    [30]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [31]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [32]

    Niksic T, Paar N, Vretenar D, Ring P 2014 Comput. Phys. Commun. 185 1808

    [33]

    Ring P, Schuck P 1981 Phys. Today 36 70

    [34]

    Staszack A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85

    [35]

    Tian Y, Ma Z Y, Ring P 2009 Phys. Lett. B 676 44

    [36]

    Niksic T, Ring P, Vretenar D, Tian Y, Ma Z Y 2010 Phys. Rev. C 81 054318

    [37]

    Shen S F, Wang H L, Meng H Y, Yan Y P, Shen J J, Wang F P, Jiang H B, Bao L N 2021 Acta Phys. Sin. 70 192101 (in Chinese) [沈水法,王华磊,孟海燕,阎玉鹏,沈洁洁,王飞鹏,蒋海滨,包莉娜 2021 物理学报 70 192101]

    [38]

    Meng J, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003

    [39]

    Wang S J, Kanellakopoulos A, Yang X F, Bai S W, Billowes J, Bissell M L, Blaum K, Cheal B, Devlin C S, Garcia Ruiz R F, Han J Z, Heylen H, Kaufmann S, König K, Koszorús Á, Lechner S, Malbrunot-Ettenauer S, Nazarewicz W, Neugart R, Neyens G, Nörtershäuser W, Ratajczyk T, Reinhard P G, Rodríguez L V, Sels S, Xie L, Xu Z Y, Yordanov D T, Yu Y M 2024 Phys. Lett. B 856 138867

    [40]

    El Adri M, Oulne M 2020 Int. J. Mod. Phys. E 29 2050089

    [41]

    Chen C H, Li Z K, Wang X H, Li R H, Fang F, Wang Z S, Li H X 2023 Acta Phys. Sin. 72 122902 (in Chinese) [陈翠红,李占奎,王秀华,李荣华,方芳,王柱生,李海霞 2023 物理学报 72 122902]

    [42]

    Liu Y, Wang R, Mushtaq Z, Tian Y, He X, Qiu H, Chen X 2025 Chin. Phys. C 49 034103

    [43]

    Enciu M, Liu H N, Obertelli A, Doornenbal P, Nowacki F, Ogata K, Poves A, Yoshida K, Achouri N L 2022 Phys. Rev. Lett. 129 262501

  • [1] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.72.20221814
    [2] Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models. Acta Physica Sinica, doi: 10.7498/aps.70.20201734
    [3] Huang Wei-Qi, Zhou Nian-Jie, Yin Jun, Miao Xin-Jian, Huang Zhong-Mei, Chen Han-Qiong, Su Qin, Liu Shi-Rong, Qin Chao-Jian. Shape and curved surface effect on silicon quantum dots. Acta Physica Sinica, doi: 10.7498/aps.62.084205
    [4] Hong Jie, Liu Bao-Long, Zhang Da-Yi, Ma Yan-Hong. Research on the shape memory effect and thermalelasticity of a novel intellectual damping material. Acta Physica Sinica, doi: 10.7498/aps.61.168102
    [5] Zhao Cui-Lan, Cong Yin-Chuan. The phonon effect of polaron and qubit in spherical shell quantum dot. Acta Physica Sinica, doi: 10.7498/aps.61.186301
    [6] Zhang Li-Chun, Li Huai-Fan, Zhao Ren. A new global embedding approach to study Hawking and Unruh effects for higher-dimensional rotation black holes. Acta Physica Sinica, doi: 10.7498/aps.60.080403
    [7] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, doi: 10.7498/aps.60.052101
    [8] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, doi: 10.7498/aps.59.8037
    [9] Ding Bin-Gang, Zhang Da-Li, Lu Ding-Hui. A discussion about neutron closed shell effect of 14O nucleus. Acta Physica Sinica, doi: 10.7498/aps.59.3142
    [10] Ding Bin-Gang, Zhang Da-Li, Lu Ding-Hui. Stability of traditional neutron magic numbers. Acta Physica Sinica, doi: 10.7498/aps.58.865
    [11] Wu Ya-Min, Chen Guo-Qing. Effect of temperature on optical bistability of coated granular composites. Acta Physica Sinica, doi: 10.7498/aps.58.2056
    [12] Sheng Zong-Qiang, Guo Jian-You. Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, doi: 10.7498/aps.57.1557
    [13] Localized surface plasmon resonance of half-shell gold film. Acta Physica Sinica, doi: 10.7498/aps.56.7219
    [14] The disappearance of conventional magic numbers and the appearance of new numbers near drip-line region studied using relativistic mean-field plus BCS model. Acta Physica Sinica, doi: 10.7498/aps.56.6905
    [15] Liu Jun-Hui, Mao Yan-Li, Ma Wen-Bo, Wu Yi-Qun, Han Jun-He, Zhai Feng-Xiao. Three-photon-absorption induced fluorescence and optical limiting properties of a new organic compound. Acta Physica Sinica, doi: 10.7498/aps.54.5173
    [16] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. Coexistance of Cu and Ag in surface nano-structure and the new behavior of glycine adsorption on silver surfaces. Acta Physica Sinica, doi: 10.7498/aps.53.3447
    [17] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, doi: 10.7498/aps.50.233
    [18] ZHAO ZHENG, LIU LIAO. A NEW UNDERSTANDING TO HAWKING-UNRUH EFFECT. Acta Physica Sinica, doi: 10.7498/aps.46.1036
    [19] TONG XIAO-MIN, LI JIA-MING. TWO-PHOTON TRANSITIONS IN ATOMIC INNER-SHELLS FOR Xe——RELETIVISTIC EFFECT AND ATOMIC SCREENING EFFECT. Acta Physica Sinica, doi: 10.7498/aps.38.1406
    [20] . Acta Physica Sinica, doi: 10.7498/aps.24.419
Metrics
  • Abstract views:  26
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  02 April 2025

/

返回文章
返回