Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvements to the Traditional Optical Model and The Applications in Heavy-Ion Collision Reactions

LIANG Chuntian SUN Xiaojun HUANG Junxi YANG Haoyu LI Xiaohua CAI Chonghai

Citation:

Improvements to the Traditional Optical Model and The Applications in Heavy-Ion Collision Reactions

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • To describe the projectile-target interaction in heavy-ion collision, this paper improves the traditional optical model and establishes a corresponding optical model for heavy-ion collisions. The program APOMHI was developed accordingly. In heavy-ion collisions, the masses of the projectile and target nuclei are comparable. Therefore, the projectile and target nuclei must be treated equally. The potential field for their relative motion must arise from an equivalent contribution by both nuclei, not solely from the target nucleus. Consequently, the angular momentum coupling scheme must employL-S coupling, not j-j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between |i- I| and i + I). This system spin S then couples with the orbital angular momentum L of the relative motion to form the total angular momentum J. Thus, the radial wave function UlSJ (r) involves three quantum numbers: l, S, and J, in contrast to the traditional optical model which involves only l and j. Furthermore, since the projectile and target masses are similar, the form of the optical model potential is symmetrized with respect to the projectile and target (see Eqs. (1)-(10) in the Theoretical Basis section). The projectile and target nuclei are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. Using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. As an example, we consider the series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters was obtained by fitting experimental data. Comparisons show that the theoretical calculations generally agree well with the available experimental data. Here, we present as examples the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus). Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
  • [1]

    Feshbach H 1958Ann. Phys. 5 357

    [2]

    Pruitt C D, Escher J E, Rahman R 2023Phys. Rev. C 107 014602

    [3]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskii E S, Talou P 2009Nucl. Data Sheets 110 3107

    [4]

    Moumene I, Bonaccorso A 2023Phys. Rev. C 108 044609

    [5]

    Pruitt C D, Escher J E, Rahman R 2023Phys. Rev. C 107 014602

    [6]

    Jeukenne J P, Lejeune A, Mahaux C 1977Phys. Rev. C 16 80

    [7]

    Jeukenne J P, Lejeune A, Mahaux C 1976Phys. Rep. 25 83

    [8]

    Bauge E, Delaroche J P, Girod M 1998Phys. Rev. C 58 1118

    [9]

    Bauge E, Delaroche J P, Girod M 2001Phys. Rev. C 63 024607

    [10]

    Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S 2015Phys. Rev. C 91 024618

    [11]

    Soukhovitskiĩ E S, Capote R, Quesada J M, Chiba S, Martyanov D S 2016Phys. Rev. C 94 064605

    [12]

    Mahaux C, Sartor R 1991Adv. Nucl. Phys. (Boston, MA:Springer US) pp1-223

    [13]

    Quesada J M, Capote R, Molina A, Lozano M 2003Phys. Rev. C 67 067601

    [14]

    Morillon B, Romain P 2007Phys. Rev. C 76 044601

    [15]

    Mueller J M, Charity R J, Shane R, Sobotka L G, Waldecker S J, Dickhoff W H, Crowell A S, Esterline J H, Fallin B, Howell C R, Westerfeldt C, Youngs M, Crowe B J, Pedroni R S 2011Phys. Rev. C 83 064605

    [16]

    Mahzoon M H, Charity R J, Dickhoff W H, Dussan H, Waldecker S J 2014Phys. Rev. Lett. 112162503

    [17]

    Atkinson M C, Dickhoff W H 2019Phys. Lett. B 798 135027

    [18]

    Zhao X, Sun W, Capote R, Capote R, Soukhovitskiĩ E S, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618

    [19]

    An H, Cai C 2006Phys. Rev. C 73 054605

    [20]

    Han Y, Shi Y, Shen Q 2006Phys. Rev. C 74 044615

    [21]

    Koning A J, Delaroche J P 2003Nucl. Phys. A 713 231

    [22]

    Li X H, Chen L W 2012Nucl. Phys. A 874 62

    [23]

    Liang C T, Li X H, Cai C H 2009J. Phys. G:Nucl. Part. Phys. 36 085104

    [24]

    Li X, Liang C, Cai C 2007Nucl. Phys. A 789 103

    [25]

    Shen Q B 2002Nucl. Sci. Eng. 141 78

    [26]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018Phys. Rev. C 98 024619.

    [27]

    Xu Y, Han Y, Liang H, Wu Z, Guo H, Cai C 2019Phys. Rev. C 99 034618

    [28]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018Phys. Rev. C 97 014615

    [29]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2021Chin. Phys. C 45 114103

    [30]

    Cai C H 2024 Personal communication

    [31]

    Raynal J 1994 CEA Saclay report CEA-N-2772

    [32]

    Roth H A, Christiansson J E, Dubois J 1980Nucl. Phys. A 343 148

    [33]

    Anjos R M, Added N, Carlin N, Fante L, Figueira M C S, Matheus R, Szanto E M, Tenreiro C, Szanto A 1994Phys. Rev. C 492018

    [34]

    Rudchik A T, Shyrma Y O, Kemper K W, Rusek K, Koshchy E I, Kliczewski S, B 2011Nucl. Phys. A 8521

    [35]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985Phys. Rev. C 31 1980

    [36]

    Thomas J, Chen Y T, Hinds S, Meredith D, Olson M 1986Phys. Rev. C 331679

    [37]

    Szilner S, Haas F, Basrak Z, Freeman R M, Morsad A, Nicoli M P 2006Nucl. Phys. A 77921

    [38]

    Tabor S L, Geesaman D F, Henning W, Kovar D G, Rehm K E, Prosser F W 1978Phys. Rev. C 17 2136

    [39]

    Bernas M, Pougheon F, Roy-Stephan M, Berg G P A, Berthier B, Le J P 1980Phys. Rev. C 22 1872

    [40]

    Rascher R, Muller W F J, Lieb K P 1979Phys. Rev. C 201028

    [41]

    Eisen Y, Tserruya I, Eyal Y, Fraenkel Z, Hillman M 1977Nucl. Phys. A 291 459

    [42]

    Bozek E, De Castro-Rizzo D M, Cavallaro S, Delaunay B, Delaunay J, Dumont H, D'onofrio A, Saint-Laurent M G, Sperduto L, Terrasi F 1986Nucl. Phys. A 451171

    [43]

    Borges A M, Silva C P, Pereira D, Chamon L C, Rossi E S, 1992Phys. Rev. C 46 2360

    [44]

    Silva C P, Pereira D, Chamon L C, Rossi E S 1997Phys. Rev. C 553155

    [45]

    Rossi E S, Pereira D, Chamon L C, Silva C P, Alvarez M A G, Gas L R 2002Nucl. Phys. A 707 325

    [46]

    Alves J J S, Gomes P R S, Lubian J, Chamon L C, Pereira D, Anjos R M 2005Nucl. Phys. A 748 59

    [47]

    Rehm K E, Koerner H J, Richter M, Rother H P, Schiffer J P, Spieler H 1975Phys. Rev. C 12 1945

    [48]

    Chamon L C, Pereira D, Rossi E S, Silva C P, Razeto G R, Borges A M, Gomes L C, Sala O 1992Phys. Lett. B 275 29

    [49]

    Salem-Vasconcelos S, Takagui E M, Bechara M J, Koide K, Dietzsch O, Baur A 1994Phys. Rev. C 50 927

    [50]

    Jia H M, Lin C J, Xu X X, Zhang H Q, Liu Z H, Yang L, Zhang S T, Bao P F, Sun L J 2012Phys. Rev. C 86 044621

    [51]

    Jha V, Roy B J, Chatterjee A, Machner H 2004Eur. Phys. J. A 19 347

    [52]

    Benjelloun M, Galster W, Vervier J 1993Nucl. Phys. A 560 715

    [53]

    Bohlen H G, Hildenbrand K D, Gobbi A, Kubo K I 1975Z. Phys. A 273211

    [54]

    Robertson B C, Sample J T, Goosman D R, Nagtani K, Jones K W 1971Phys. Rev. C 4 2176

    [55]

    Broda R, Ishihara M, Herskind B, Oeschler H, Ogaza S, Ryde H 1975Nucl. Phys. A 248 356

    [56]

    Hinde D J, Charity R J, Foote G S, Leigh J R, Newton J O, Ogaza S, Chattejee A 1986Nucl. Phys. A 452 550

    [57]

    Charity R J, Leigh J R, Bokhorst J J M, Chatterjee A, Foote G S, Hinde D J, Newton J O, Ogaza S, Ward D 1986Nucl. Phys. A 457 441

    [58]

    Sahu P K, Choudhury R K, Biswas D C, Nayak B K 2001Phys. Rev. C 64 014609

    [59]

    Plicht J, Britt H C, Fowler M M, Fraenkel Z, Gavron A, Wilhelmy J B 1983Phys. Rev. C 28 2022

    [60]

    Laveen P V, Prasad E, Madhavan N, Pal S, Sadhukhan J, Nath S, Gehlot J, Jhingan A, Varier K M, Thomas R G 2015J. Phys. G 42 95105

    [61]

    Yanez R, Loveland W, Barrett J S, Yao L 2013Phys. Rev. C 88 14606

    [62]

    Appannababu S, Mukherjee S, Singh N L, Rath P K, Kumar G K 2009Phys. Rev. C 80 24603

    [63]

    Vulgaris E, Grodzins L, Steadman S G, Ledoux R 1986Phys. Rev. C 33 2017

    [64]

    Rudchik A A, Rudchik A T, Kliczewski S, Koshchyc E I, Ponkratenko O A, 2007Nucl. Phys. A 785293

    [65]

    Heusch B, Beck C, Coffin J P, Engelstein P, Freeman R M, Guillaume G, Haas F, Wagner P 1982Phys. Rev. C 26 542

    [66]

    Beck C, Haas F, Freeman R M, Heusch B, Coffin J P, Guillaume G, Rami F, Wagner P 1985Nucl. Phys. A 442 320

    [67]

    Kovar D G, Geesaman D F, Braid T H, Eisen Y, Henning W, Ophel T R, Paul M, Rehm K E, Sanders S J 1979Phys. Rev. C 20 1305

    [68]

    Sperr P, Braid T H, Eisen Y, Kovar D G, Prosser F W, Schiffer J P, Tabor S L, Vigdor S 1976Phys. Rev. Lett. 37 321

    [69]

    Steinbach T K, Vadas J, Schmidt J, Haycraft C, Hudan S, deSouza R T 2014Phys. Rev. C 90 41603

    [70]

    Eyal Y, Beckerman M, Chechik R, Fraenkel Z, Stocker H 1976Phys. Rev. C 131527

    [71]

    Szilner S, Nicoli M P, Basrak Z, Freeman R M, Haas F, Morsad A 2001Phys. Rev. C 64064614

    [72]

    Al-Abdullah T, Carstoiu F, Gagliardi C A 2014Phys. Rev. C 89 064602

    [73]

    Rudchik A T, Shyrma Y O, Kemper K W, Piasecki E, Romanyshyna G P, Stepanenko Y M, Strojek I, Sakuta S B, Budzanowski A, Głowacka L, Skwirczyńska I, Siudak R, Choiński J, Szczurek A 2011Eur. Phys. J. A 47 1

    [74]

    Deb N K, Kalita K, Rashid H A, Das A, Nath S, Gehlot J, Madhavan N, Biswas R, Sahoo R N, Giri P K, Parihari A, Rai N K, Biswas S, Mahato A, Roy B J 2022Phys. Rev. C 105 054608

    [75]

    Wong C Y 1973Phys. Rev. Lett. 31 766

    [76]

    Wang L, Zhao K, Tian J L 2013Nucl. Phys. Rev. 30 289

    [77]

    Chen J B, Yang Y Y, Wang J S, Wang Q, Jin S L, Ma P, Ma J B, Huang M R, Han J L, Bai Z, Hu Q, Jin L, Li R, Zhao M H 2014Nucl. Phys. Rev. 31 53

    [78]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2020Chin. Phys. C 44 124103

    [79]

    Zamrun F M, Hagino K 2008Phys. Rev. C 77 014606

    [80]

    Xu Y L, Han Y L, Liang H Y, Wu Z D, Guo H R, Cai C H 2020Chin. Phys. C 44 034101

    [81]

    Beck C, Keeley N, Diaz-Torres A 2007Phys. Rev. C 75 054605

    [82]

    Pieper S C, Macfarlane M H, Gloeckner D H, Kovar D G, Becchetti F D, Harvey B G, Hendrie D L, Homeyer H, Mahoney J, Pühlhofer F, Oertzen W, Zisman M S 1978Phys. Rev. C 18 180

    [83]

    Al-Ghamdi A H, Ibraheem A A, Hamada S 2022J. Taibah Univ. Sci. 16 1026

  • [1] DU Wenqing, ZHAO Xiuniao. Research on Lane-consistent dispersive optical-model potential for 208Pb. Acta Physica Sinica, doi: 10.7498/aps.74.20241273
    [2] Hou Yan-Jie, Hu Chun-Guang, Zhang Lei, Chen Xue-Jiao, Fu Xing, Hu Xiao-Tang. Characterization of effective conductive layer of nano organic thin film using reflectance spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.65.200201
    [3] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, doi: 10.7498/aps.64.097202
    [4] You Yang-Ming, Wang Bing-Zhang, Wang Ji-You. Optical model potential of antiproton atoms with nuclear polarization correction. Acta Physica Sinica, doi: 10.7498/aps.61.202401
    [5] Lu Gong-Ru, Li Xin-Qiang, Li Yan-Min, Su Fang. Study of neutral Bs mixing in a family non-universal Z' model. Acta Physica Sinica, doi: 10.7498/aps.61.241301
    [6] Lin Qing. Linear optical realization of universal unambiguous discrimination of quantum state. Acta Physica Sinica, doi: 10.7498/aps.58.5978
    [7] Guo Zeng-Yuan, Cao Bing-Yang. A general heat conduction law based on the concept of motion of thermal mass. Acta Physica Sinica, doi: 10.7498/aps.57.4273
    [8] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, doi: 10.7498/aps.56.5591
    [9] Universal telecloning of quantum entangled states. Acta Physica Sinica, doi: 10.7498/aps.56.6797
    [10] Ren Hao, Gu De-Wei, Pan Zheng-Quan, Ying He-Ping. A study on critical universality of the random-bond Potts models with self-dual quenched randomness. Acta Physica Sinica, doi: 10.7498/aps.53.265
    [11] He Mao-Gang, Liu Zhi-Gang. . Acta Physica Sinica, doi: 10.7498/aps.51.1004
    [12] Deng Wen-Ji. . Acta Physica Sinica, doi: 10.7498/aps.51.1171
    [13] ZHANG HU-YONG, MA YU-GANG, SU QIAN-MIN, SHEN WEN-QING, CAI XIANG-ZHOU, FANG DE-QING, HU PENG-YUN, HAN DING-DING. ISOSPIN EFFECTS ON THE LIGHT PARTICLES IN INTERMEDIATE ENERGY HEAVY ION COLLISIONS. Acta Physica Sinica, doi: 10.7498/aps.50.193
    [14] XU XIAO-HU, SHEN JIAN. A PHENOMELOGICAL MODEL FOR FERROELECTRIC SUPERLATTICES. Acta Physica Sinica, doi: 10.7498/aps.48.2142
    [15] SUN FENG-JIU. REPRESENTATION TRANSFORMATION AND THE GENERAL METHOD FOR SOLVING OPTICAL RELATION EQUATIONS IN OPERATOR OPTICS. Acta Physica Sinica, doi: 10.7498/aps.38.653
    [16] OU FA, CAI YONG-QIANG. THE GENERALIZED DYNAMICAL EQUATION OF OPTICAL BISTABILITY AND LASER AND ITS STABILITY ANALYSIS. Acta Physica Sinica, doi: 10.7498/aps.37.330
    [17] WU ZI-YU, WANG KE-LIN, LAN HUI-BIN, ZHANG ZHENG-GANG, XIAN DING-CHANG. A PHENOMENOLOGICAL MODEL FOR 0- MESON (Ⅱ)——THE ELECTROMAGNETIC FORM FACTOR. Acta Physica Sinica, doi: 10.7498/aps.36.1618
    [18] Wu Zi-yu;Lan Hui-bin; Wang Ke-lin; Liu Yao-yan. A PHENOMENOLOGICAL MODEL FOR O- MESON (I). Acta Physica Sinica, doi: 10.7498/aps.36.1048
    [19] WANG GUANG-RUI, CHEN SHI-GANG. UNIVERSAL CONSTANTS AND UNIVERSAL FUNCTIONS OF PERIQO-N-TUPLING SEQUENCES IN ONE-DIMENSIONAL UNIMODAL MAPPINGS. Acta Physica Sinica, doi: 10.7498/aps.35.58
    [20] WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, doi: 10.7498/aps.33.1008
Metrics
  • Abstract views:  26
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  24 July 2025
  • /

    返回文章
    返回