Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvements of traditional optical model and its applications in heavy-ion collision reaction

LIANG Chuntian SUN Xiaojun HUANG Junxi YANG Haoyu LI Xiaohua CAI Chonghai

Citation:

Improvements of traditional optical model and its applications in heavy-ion collision reaction

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
cstr: 32037.14.aps.74.20250633
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To describe the projectile-target interaction in heavy-ion collision, the traditional optical model is improved and a corresponding optical model for heavy-ion collisions is established in this work The program APOMHI is developed accordingly. In heavy-ion collisions, the mass of the projectile is comparable to the mass of target nucleus. Therefore, the projectile and target nucleus must be treated equally. The potential field for their relative motion must arise from an equivalent contribution of both nuclei, not just from the target nucleus. Consequently, the angular momentum coupling scheme must adopt L - S coupling, instead of j - j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between $ \left| {I - i} \right| $ and $ i + I $). Then, the spin S of this system couples with the orbital angular momentum L of relative motion, forming a total angular momentum J . Thus, the radial wave function UlSJ (r) involves three quantum numbers: l , S , and J , while traditional optical model only involves l and j . Furthermore, since the mass of projectile is similar the mass of target, the form of the optical model potential is symmetrical relative to the projectile and target. The projectile nucleus and the target nucleus are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. By using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. Taking for example a series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters is obtained by fitting experimental data. The comparisons show that the theoretical calculations generally accord well with the available experimental data. Here, the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus) are taken for example. Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
      Corresponding author: SUN Xiaojun, sxj0212@gxnu.edu.cn
    • Funds: Project supported by the Open Fund of the Guangxi Key Laboratory of Nuclear Physics and Technology, China (Grant No. NLK2022-03), and the Central Government Guidance Funds for Local Scientific and Technological Development, China (Grant No. Guike ZY22096024).
    [1]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [2]

    Pruitt C D, Escher J E, Rahman R 2023 Phys. Rev. C 107 014602Google Scholar

    [3]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskii E S, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [4]

    Moumene I, Bonaccorso A 2023 Phys. Rev. C 108 044609Google Scholar

    [5]

    Becchetti F D, Greenlees G. W. 1969 Phys. Rev. 182 1190Google Scholar

    [6]

    Jeukenne J P, Lejeune A, Mahaux C 1977 Phys. Rev. C 16 80Google Scholar

    [7]

    Jeukenne J P, Lejeune A, Mahaux C 1976 Phys. Rep. 25 83Google Scholar

    [8]

    Bauge E, Delaroche J P, Girod M 1998 Phys. Rev. C 58 1118Google Scholar

    [9]

    Bauge E, Delaroche J P, Girod M 2001 Phys. Rev. C 63 024607Google Scholar

    [10]

    Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S 2015 Phys. Rev. C 91 024618Google Scholar

    [11]

    Soukhovitskiĩ E S, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [12]

    Mahaux C, Sartor R 1991 Adv. Nucl. Phys. (Boston, MA: Springer US) pp1–223

    [13]

    Quesada J M, Capote R, Molina A, Lozano M 2003 Phys. Rev. C 67 067601Google Scholar

    [14]

    Morillon B, Romain P 2007 Phys. Rev. C 76 044601Google Scholar

    [15]

    Mueller J M, Charity R J, Shane R, Sobotka L G, Waldecker S J, Dickhoff W H, Crowell A S, Esterline J H, Fallin B, Howell C R, Westerfeldt C, Youngs M, Crowe B J, Pedroni R S 2011 Phys. Rev. C 83 064605Google Scholar

    [16]

    Mahzoon M H, Charity R J, Dickhoff W H, Dussan H, Waldecker S J 2014 Phys. Rev. Lett. 112 162503Google Scholar

    [17]

    Atkinson M C, Dickhoff W H 2019 Phys. Lett. B 798 135027Google Scholar

    [18]

    Zhao X, Sun W, Capote R, Capote R, Soukhovitskiĩ E S, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [19]

    An H, Cai C 2006 Phys. Rev. C 73 054605Google Scholar

    [20]

    Han Y, Shi Y, Shen Q 2006 Phys. Rev. C 74 044615Google Scholar

    [21]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [22]

    Li X H, Chen L W 2012 Nucl. Phys. A 874 62Google Scholar

    [23]

    Liang C T, Li X H, Cai C H 2009 J. Phys. G: Nucl. Part. Phys. 36 085104Google Scholar

    [24]

    Li X, Liang C, Cai C 2007 Nucl. Phys. A 789 103Google Scholar

    [25]

    Shen Q B 2002 Nucl. Sci. Eng. 141 78Google Scholar

    [26]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 98 024619Google Scholar

    [27]

    Xu Y, Han Y, Liang H, Wu Z, Guo H, Cai C 2019 Phys. Rev. C 99 034618Google Scholar

    [28]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 97 014615Google Scholar

    [29]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2021 Chin. Phys. C 45 114103Google Scholar

    [30]

    Raynal J 1994 Notes on ECIS94 CEA Saclay Report CEA-N-2772

    [31]

    Roth H A, Christiansson J E, Dubois J 1980 Nucl. Phys. A 343 148Google Scholar

    [32]

    Anjos R M, Added N, Carlin N, Fante L, Figueira M C S, Matheus R, Szanto E M, Tenreiro C, Szanto A 1994 Phys. Rev. C 49 2018Google Scholar

    [33]

    Rudchik A T, Shyrma Y O, Kemper K W, Rusek K, Koshchy E I, Kliczewski S, B 2011 Nucl. Phys. A 852 1Google Scholar

    [34]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980Google Scholar

    [35]

    Thomas J, Chen Y T, Hinds S, Meredith D, Olson M 1986 Phys. Rev. C 33 1679Google Scholar

    [36]

    Szilner S, Haas F, Basrak Z, Freeman R M, Morsad A, Nicoli M P 2006 Nucl. Phys. A 779 21Google Scholar

    [37]

    Tabor S L, Geesaman D F, Henning W, Kovar D G, Rehm K E, Prosser F W 1978 Phys. Rev. C 17 2136Google Scholar

    [38]

    Bernas M, Pougheon F, Roy-Stephan M, Berg G P A, Berthier B, Le J P 1980 Phys. Rev. C 22 1872Google Scholar

    [39]

    Rascher R, Muller W F J, Lieb K P 1979 Phys. Rev. C 20 1028Google Scholar

    [40]

    Eisen Y, Tserruya I, Eyal Y, Fraenkel Z, Hillman M 1977 Nucl. Phys. A 291 459Google Scholar

    [41]

    Bozek E, De Castro-Rizzo D M, Cavallaro S, Delaunay B , Delaunay J, Dumont H, D'onofrio A, Saint-Laurent M G, Sperduto L, Terrasi F 1986 Nucl. Phys. A 451 171Google Scholar

    [42]

    Borges A M, Silva C P, Pereira D, Chamon L C, Rossi E S, 1992 Phys. Rev. C 46 2360Google Scholar

    [43]

    Silva C P, Pereira D, Chamon L C, Rossi E S 1997 Phys. Rev. C 55 3155Google Scholar

    [44]

    Rossi E S, Pereira D, Chamon L C, Silva C P, Alvarez M A G, Gas L R 2002 Nucl. Phys. A 707 325Google Scholar

    [45]

    Alves J J S, Gomes P R S, Lubian J, Chamon L C, Pereira D, Anjos R M 2005 Nucl. Phys. A 748 59Google Scholar

    [46]

    Rehm K E, Koerner H J, Richter M, Rother H P, Schiffer J P, Spieler H 1975 Phys. Rev. C 12 1945Google Scholar

    [47]

    Chamon L C, Pereira D, Rossi E S, Silva C P, Razeto G R, Borges A M, Gomes L C, Sala O 1992 Phys. Lett. B 275 29Google Scholar

    [48]

    Salem-Vasconcelos S, Takagui E M, Bechara M J, Koide K, Dietzsch O, Baur A 1994 Phys. Rev. C 50 927Google Scholar

    [49]

    Jia H M, Lin C J, Xu X X, Zhang H Q, Liu Z H, Yang L, Zhang S T, Bao P F, Sun L J 2012 Phys. Rev. C 86 044621Google Scholar

    [50]

    Jha V, Roy B J, Chatterjee A, Machner H 2004 Eur. Phys. J. A 19 347Google Scholar

    [51]

    Benjelloun M, Galster W, Vervier J 1993 Nucl. Phys. A 560 715Google Scholar

    [52]

    Bohlen H G, Hildenbrand K D, Gobbi A, Kubo K I 1975 Z. Phys. A: Hardrons Nucl. 273 211Google Scholar

    [53]

    Robertson B C, Sample J T, Goosman D R, Nagtani K, Jones K W 1971 Phys. Rev. C 4 2176Google Scholar

    [54]

    Broda R, Ishihara M, Herskind B, Oeschler H, Ogaza S, Ryde H 1975 Nucl. Phys. A 248 356Google Scholar

    [55]

    Hinde D J, Charity R J, Foote G S, Leigh J R, Newton J O, Ogaza S, Chattejee A 1986 Nucl. Phys. A 452 550Google Scholar

    [56]

    Charity R J, Leigh J R, Bokhorst J J M, Chatterjee A, Foote G S, Hinde D J, Newton J O, Ogaza S, Ward D 1986 Nucl. Phys. A 457 441Google Scholar

    [57]

    Sahu P K, Choudhury R K, Biswas D C, Nayak B K 2001 Phys. Rev. C 64 014609Google Scholar

    [58]

    van der Plicht J, Britt H C, Fowler M M, Fraenkel Z, Gavron A, Wilhelmy J B 1983 Phys. Rev. C 28 2022Google Scholar

    [59]

    Laveen P V, Prasad E, Madhavan N, Pal S, Sadhukhan J, Nath S, Gehlot J, Jhingan A, Varier K M, Thomas R G 2015 J. Phys. G: Nucl. Part. Phys. 42 95105Google Scholar

    [60]

    Yanez R, Loveland W, Barrett J S, Yao L 2013 Phys. Rev. C 88 14606Google Scholar

    [61]

    Appannababu S, Mukherjee S, Singh N L, Rath P K, Kumar G K 2009 Phys. Rev. C 80 24603Google Scholar

    [62]

    Vulgaris E, Grodzins L, Steadman S G, Ledoux R 1986 Phys. Rev. C 33 2017Google Scholar

    [63]

    Rudchik A A, Rudchik A T, Kliczewski S, Koshchyc E I, Ponkratenko O A, 2007 Nucl. Phys. A 785 293Google Scholar

    [64]

    Heusch B, Beck C, Coffin J P, Engelstein P, Freeman R M, Guillaume G, Haas F, Wagner P 1982 Phys. Rev. C 26 542Google Scholar

    [65]

    Beck C, Haas F, Freeman R M, Heusch B, Coffin J P, Guillaume G, Rami F, Wagner P 1985 Nucl. Phys. A 442 320Google Scholar

    [66]

    Kovar D G, Geesaman D F, Braid T H, Eisen Y, Henning W, Ophel T R, Paul M, Rehm K E, Sanders S J 1979 Phys. Rev. C 20 1305Google Scholar

    [67]

    Sperr P, Braid T H, Eisen Y, Kovar D G, Prosser F W, Schiffer J P, Tabor S L, Vigdor S 1976 Phys. Rev. Lett. 37 321Google Scholar

    [68]

    Steinbach T K, Vadas J, Schmidt J, Haycraft C, Hudan S, deSouza R T 2014 Phys. Rev. C 90 41603Google Scholar

    [69]

    Eyal Y, Beckerman M, Chechik R, Fraenkel Z, Stocker H 1976 Phys. Rev. C 13 1527Google Scholar

    [70]

    Szilner S, Nicoli M P, Basrak Z, Freeman R M, Haas F, Morsad A 2001 Phys. Rev. C 64 064614Google Scholar

    [71]

    Al-Abdullah T, Carstoiu F, Gagliardi C A 2014 Phys. Rev. C 89 064602Google Scholar

    [72]

    Rudchik A T, Shyrma Y O, Kemper K W, Piasecki E, Romanyshyna G P, Stepanenko Y M, Strojek I, Sakuta S B, Budzanowski A, Głowacka L, Skwirczyńska I, Siudak R, Choiński J, Szczurek A 2011 Eur. Phys. J. A 47 1Google Scholar

    [73]

    Deb N K, Kalita K, Rashid H A, Das A, Nath S, Gehlot J, Madhavan N, Biswas R, Sahoo R N, Giri P K, Parihari A, Rai N K, Biswas S, Mahato A, Roy B J 2022 Phys. Rev. C 105 054608Google Scholar

    [74]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [75]

    Wang L, Zhao K, Tian J L 2013 Nucl. Phys. Rev. 30 289Google Scholar

    [76]

    Chen J B, Yang Y Y, Wang J S, Wang Q, Jin S L, Ma P, Ma J B, Huang M R, Han J L, Bai Z, Hu Q, Jin L, Li R, Zhao M H 2014 Nucl. Phys. Rev. 31 53Google Scholar

    [77]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2020 Chin. Phys. C 44 124103Google Scholar

    [78]

    Zamrun F M, Hagino K 2008 Phys. Rev. C 77 014606Google Scholar

    [79]

    Xu Y L, Han Y L, Liang H Y, Wu Z D, Guo H R, Cai C H 2020 Chin. Phys. C 44 034101Google Scholar

    [80]

    Beck C, Keeley N, Diaz-Torres A 2007 Phys. Rev. C 75 054605Google Scholar

    [81]

    Pieper S C, Macfarlane M H, Gloeckner D H, Kovar D G, Becchetti F D, Harvey B G, Hendrie D L, Homeyer H, Mahoney J, Pühlhofer F, Oertzen W, Zisman M S 1978 Phys. Rev. C 18 180Google Scholar

    [82]

    Al-Ghamdi A H, Ibraheem A A, Hamada S 2022 J. Taibah Univ. Sci. 16 1026Google Scholar

  • 图 1  9Be, 10B, 11B和16O作为靶核的熔合截面理论与实验比较(实验数据来源为: H. A. Roth 1980[31], R. M. Anjos 1994[32], J. Thomas 1985[34], J. Thomas 1986[35])

    Figure 1.  Comparison between theoretical results and experimental data of fusion cross section for 9Be, 10B, 11B and 16O target. The experimental data come from H. A. Roth 1980[31], R. M. Anjos 1994[32], J. Thomas 1985[34], J. Thomas 1986[35].

    图 4  150Sm, 188Os, 192Os, 194Pt, 197Au和208Pb作为靶核的熔合截面理论与实验比较(实验数据来源为: D. J. Hinde 1986 (EVR)[55], R. J. Charity 1986 (FF)[56], R. J. Charity 1986 (EVR FF)[56], J. van der Plicht 1983[58], P. V. Laveen 2015 (EVR)[59], P. V. Laveen 2015 (FF)[59], R. Yanez 2013 (FF)[60], S. Appannababu 2009 (FF)[61], E. Vulgaris 1986[62])

    Figure 4.  Comparison between theoretical results and experimental data of fusion cross section for 150Sm, 188Os, 192Os, 194Pt, 197Au and 208Pb target. The experimental data come from D. J. Hinde 1986 (EVR)[55], R. J. Charity 1986 (FF)[56], R. J. Charity 1986 (EVR FF)[56], J. van der Plicht 1983[58], P. V. Laveen 2015 (EVR)[59], P. V. Laveen 2015 (FF)[59], R. Yanez 2013 (FF)[60], S. Appannababu 2009 (FF)[61], E. Vulgaris 1986[62].

    图 2  24Mg, 27Al, 28Si, 44Ca, 58Ni和60Ni 作为靶核的熔合截面理论与实验比较(实验数据来源为: S. L. Tabor 1978[37], R. Rascher 1979[39], Y. Eisen 1977[40], E. Bozek 1986[41], A. M. Borges 1992[42], C. P. Silva 1997[43])

    Figure 2.  Comparison between theoretical results and experimental data of fusion cross section for 24Mg, 27Al, 28Si, 44Ca, 58Ni and 60Ni target. The experimental data come from S. L. Tabor 1978[37], R. Rascher 1979[39], Y. Eisen 1977[40], E. Bozek 1986[41], A. M. Borges 1992[42], C. P. Silva 1997[43].

    图 3  63Cu, 64Ni, 65Cu, 74Ge, 92Mo和148Nd 作为靶核的熔合截面理论与实验比较(实验数据来源为: L. C. Chamon 1992[47], C. P. Silva 1997[43], H. M. Jia 2012[49], M. Bonjelloun 1993[51], R. Broda 1975[54])

    Figure 3.  Comparison between theoretical results and experimental data of fusion cross section for 63Cu, 64Ni, 65Cu, 74Ge, 92Mo and 148Nd target. The experimental data come from L. C. Chamon 1992[47], C. P. Silva 1997[43], H. M. Jia 2012[49], M. Bonjelloun 1993[51], R. Broda 1975[54].

    图 5  不同入射能量下13C, 16O, 24Mg和64Zn作为靶核的弹性散射角分布理论与实验比较(实验数据来源: A. T. Rudchik 2011[33], S. Szilner 2006[36], M. Bernas 1980[38], S. Salem-Vasconcelos 1994[48])

    Figure 5.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 13C, 16O, 24Mg and 64Zn target at different incident energies. The experimental data come from A. T. Rudchik 2011[33], S. Szilner 2006[36], M. Bernas 1980[38], S. Salem-Vasconcelos 1994[48].

    图 7  不同入射能量下90Zr, 112, 116Sn和174Yb作为靶核的弹性散射角分布理论与实验比较(实验数据来源为: V. Jha 2004[50], H. G. Bohlen 1975[52], B. C. Robertson 1976[53], P. K. Sahu 2001[57])

    Figure 7.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 90Zr, 112, 116Sn and 174Yb target at different incident energies. The experimental data come from V. Jha 2004[50], H. G. Bohlen 1975[52], B. C. Robertson 1976[53], P. K. Sahu 2001[57].

    图 6  不同入射能量下58Ni和60Ni作为靶核的弹性散射角分布理论与实验比较

    Figure 6.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 58Ni and 60Ni target at different incident energies.

    图 8  普适光参下靶核为7Li, 12C和120Sn的熔合截面与弹性散射角分布情况(实验数据来源为: B. Heusch 1982[64], C. Beck 1985[65], D. G. Kovar 1979[66], P. Sperr 1976[67], T. K. Steinbach 2014[68], Y. Eyal 1976[69], A. T. Rudchik 2007[63])

    Figure 8.  Fusion cross section and elastic scattering angular distribution for 7Li, 12C and 120Sn target with global optical parameters. The experimental data come from B. Heusch 1982[64], C. Beck 1985[65], D. G. Kovar 1979[66], P. Sperr 1976[67], T. K. Steinbach 2014[68], Y. Eyal 1976[69], A. T. Rudchik 2007[63].

    图 9  单核光参下靶核为7Li, 12C和120Sn的熔合截面与弹性散射角分布情况(实验数据来源为: B. Heusch 1982[64], C. Beck 1985[65], D. G. Kovar 1979[66], P. Sperr 1976[67], T. K. Steinbach 2014[68], Y. Eyal 1976[69], A. T. Rudchik 2007[63])

    Figure 9.  Fusion cross section and elastic scattering angular distribution for 7Li, 12C and 120Sn target with single nuclear optical parameters. The experimental data come from B. Heusch 1982[64], C. Beck 1985[65], D. G. Kovar 1979[66], P. Sperr 1976[67], T. K. Steinbach 2014[68], Y. Eyal 1976[69], A. T. Rudchik 2007[63].

    图 10  普适光参对14C和61Ni靶核的验证(实验数据来源: A. T. Rudchik 2011[72], N. K. Deb 2022[73])

    Figure 10.  Verification for 14C and 61Ni target with the global optical parameters. The experimental data come from A. T. Rudchik 2011[72], N. K. Deb 2022[73].

    表 1  APOMHI光学模型势参数

    Table 1.  Parameters in the APOMHI optical model.

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}\mathrm{A}}, {r}_{\mathrm{C}\mathrm{B}} $ 2
    中心势 $ {V}_{\mathrm{c}}\left(r\right) $ $ {r}_{\mathrm{c}\mathrm{A}} $,$ {r}_{\mathrm{c}\mathrm{B}}, {a}_{\mathrm{c}\mathrm{A}}, {a}_{\mathrm{c}\mathrm{B}0}, {a}_{\mathrm{C}\mathrm{B}1} $ 5
    面吸收虚部势 $ {W}_{\mathrm{S}}\left(r\right) $ $ r_{\mathrm{S}\mathrm{A}},r_{\mathrm{S}\mathrm{B}},a_{\mathrm{S}\mathrm{A}},a_{\mathrm{S}\mathrm{B}0},a_{\mathrm{S}\mathrm{B}1} $ 5
    体系收虚部势 $ {W}_{\mathrm{V}}\left(r\right) $ $ {r}_{\mathrm{V}\mathrm{A}}, {r}_{\mathrm{V}\mathrm{B}}, {a}_{\mathrm{V}\mathrm{A}}, {a}_{\mathrm{V}\mathrm{B}0}, {a}_{\mathrm{V}\mathrm{B}1} $ 5
    自旋-轨道实部势 $ {V}_{\mathrm{SO}}(r) $ rRSOA, rRSOB, aRSOA,
    aRSOB0, aRSOB1,$ {\overline{V}_{\mathrm{SO}}} $
    6
    自旋-轨道虚部势 $ {W}_{\mathrm{S}\mathrm{O}}(r) $ rISOA, rISOB, aISOA,
    aISOB0, aISOB1${\overline{W}_{\mathrm{SO}}} $
    6
    中心势强度 $ {\overline{V}_{\mathrm{c}}} $ $ {\overline{V}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{\mathrm{B}}, {\overline{V}}_{4}} $ 5
    面吸收势强度 $ {\overline{W}_{\mathrm{S}}} $ $ {\overline{W}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}\mathrm{B}}, {\overline{W}}_{\mathrm{S}2}} $ 4
    体系收势强度 $ {\overline{W}_{\mathrm{V}}} $ $ {\overline{W}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}} $ 3
    总计 41
    DownLoad: CSV

    表 2  SOOPA光学模型势参数

    Table 2.  Parameters in the SOOPA optical model.

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}} $ 1
    0级弥散宽度 $ {a}_{i0} $ $ a_{\mathrm{c}0},a_{\mathrm{S}0},a_{\mathrm{V}0},a_{\mathrm{S}\mathrm{O}0} $ 4
    0级半径参数 $ {r}_{i0} $ $ r_{\mathrm{c}0},r_{\mathrm{S}0},r_{\mathrm{V}0},r_{\mathrm{S}\mathrm{O}0} $ 4
    修正参数 $ \xi $ $ \xi $ 1
    1级弥散宽度 $ a_{\mathrm{\mathit{i}1}} $ $ a_{\mathrm{c}1},a_{\mathrm{S}1},a_{\mathrm{V}1},a_{\mathrm{S}\mathrm{O}1} $ 4
    1级半径参数 $ r_{i1} $ $ r_{\mathrm{c}1},r_{\mathrm{S}1},r_{\mathrm{V}1},r_{\mathrm{S}\mathrm{O}1} $ 4
    中心势强度 $ {\overline{V}}_{\mathrm{c}} $ $ {\overline{V}}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{3}, {\overline{V}}_{4} $ 5
    面吸收势强度 $ {\overline{W}}_{\mathrm{S}} $ $ {\overline{W}}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}2}, {\overline{W}}_{\mathrm{S}3} $ 4
    体系收势强度 $ {\overline{W}}_{\mathrm{V}} $ $ {\overline{W}}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}{, \stackrel{-}{W}}_{\mathrm{V}3} $ 4
    自旋-轨道实部
    势强度
    $ {\overline{V}}_{\mathrm{S}\mathrm{O}} $ VSO 1
    自旋-轨道虚部
    势强度
    $ {\overline{W}}_{\mathrm{S}\mathrm{O}} $ WSO 1
    总计 33
    DownLoad: CSV

    表 3  本文实验数据来源

    Table 3.  Experimental data used in this work

    序号 靶核 熔合截面 弹性散射角分布
    EL/MeV 文献 EL/MeV 文献
    1 9Be 7.0—21.0 [31]
    2 10B 22.0—63.0 [32]
    3 11B 21.0—65.0 [32]
    4 13C 105.0 [33]
    5 16O 13.9—85.0 [34,35] 85.0 [36]
    6 24Mg 32.0—72.0 [37] 50.0 [38]
    7 27Al 28.0—72.0 [39,40]
    8 28Si 34.0—72.0 [39]
    9 44Ca 27.0—60.0 [41]
    10 58Ni 35.0—64.0 [42,43] 35.1, 36.0, 37.1, 38.0, 46.0, 63.0 [4446]
    11 60Ni 40.0—63.0 [43] 34.5, 35.5, 37.1, 38.0, 63.0 [44,46]
    12 64Ni 38.5—64.0 [43]
    13 63Cu 40.0—65.0 [47]
    14 65Cu 40.0—65.0 [47]
    15 64Zn 49.0 [48]
    16 74Ge 37.0—61.0 [49]
    17 90Zr 90.0 [50]
    18 92Mo 50.0—65.0 [51]
    19 112Sn 60.0 [52]
    20 116Sn 67.0 [53]
    21 148Nd 61.8—77.0 [54]
    22 150Sm 65.0—125.0 [55,56]
    23 174Yb 83.0 [57]
    24 188Os 80.0—140.0 [58]
    25 192Os 79.0—124.0 [55,56]
    26 194Pt 77.6—106.0 [59]
    27 197Au 77.6—102.0 [60,61]
    28 208Pb 75.0—102.0 [62]
    29 7Li 114 [63]
    30 12C 15.0—216 [6469] 66.2, 85.0, 100.0, 120.0, 216.0 [70,71]
    31 120Sn 60.0, 66.7, 72.0 [46,52,53]
    32 14C 105.0 [72]
    33 61Ni 33.5—52.6 [73]
    DownLoad: CSV

    表 4  18O作为弹核系列核反应APOMHI模型下普适光学势最佳参数

    Table 4.  The APOMHI optimal OMP parameters for 18O projectiles incidence on different target nuclei.

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $451.0000000022$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.06584537
    2$ {\overline{V}}_{1} $15.3000000023$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $0.48015487
    3$ {\overline{V}}_{2} $0.4800000024$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.01976280
    4$ {\overline{V}}_{\mathrm{B}} $0.0000000025$ {r}_{\mathrm{c}\mathrm{A}} $1.03999996
    5$ {\overline{V}}_{4} $18.7319297826$ {r}_{\mathrm{c}\mathrm{B}} $1.04000000
    6$ {\overline{W}}_{\mathrm{S}0} $30.0000000027$ {r}_{\mathrm{S}\mathrm{A}} $1.84839511
    7$ {\overline{W}}_{\mathrm{S}1} $–0.9900000028$ {r}_{\mathrm{S}\mathrm{B}} $1.46500000
    8$ {\overline{W}}_{\mathrm{S}\mathrm{B}} $0.0000000029$ {r}_{\mathrm{V}\mathrm{A}} $1.93000000
    9$ {\overline{W}}_{\mathrm{S}2} $0.0000000030$ {r}_{\mathrm{V}\mathrm{B}} $1.47000000
    10$ {\overline{W}}_{\mathrm{V}0} $10.0000000031$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $1.04999995
    11$ {\overline{W}}_{\mathrm{V}1} $13.0000000032$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}} $1.55366528
    12$ {\overline{W}}_{\mathrm{V}2} $–0.0120000033$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $1.05001342
    13$ {\overline{V}}_{\mathrm{S}\mathrm{O}} $80.0000000034$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}} $1.75388050
    14$ {\overline{W}}_{\mathrm{S}\mathrm{O}} $25.0000000035$ {r}_{\mathrm{C}\mathrm{A}} $1.25000000
    15$ {a}_{\mathrm{c}\mathrm{A}} $0.8500000036$ {r}_{\mathrm{C}\mathrm{B}} $1.25000000
    16$ {a}_{\mathrm{c}\mathrm{B}0} $0.0822956637$ {a}_{\mathrm{c}\mathrm{B}1} $0.24493097
    17$ {a}_{\mathrm{S}\mathrm{A}} $0.3510782138$ {a}_{\mathrm{S}\mathrm{B}1} $0.35000000
    18$ {a}_{\mathrm{S}\mathrm{B}0} $0.3477544839$ {a}_{\mathrm{V}\mathrm{B}1} $0.09000000
    19$ {a}_{\mathrm{V}\mathrm{A}} $0.3962688140$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.11783799
    20$ {a}_{\mathrm{V}\mathrm{B}0} $0.3833678141$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.07000000
    21$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $0.79141617
    DownLoad: CSV

    表 5  18O作为弹核系列核反应SOOPA模型下普适光学势最佳参数

    Table 5.  The SOOPA optimal OMP parameters for 18O projectiles incidence on different target nuclei.

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $1300.0000000018$ {a}_{\mathrm{V}0} $0.64614904
    2$ {\overline{V}}_{1} $9.3295412119$ {a}_{\mathrm{S}\mathrm{O}0} $0.55000001
    3$ {\overline{V}}_{2} $–0.0331055720$ {r}_{\mathrm{R}0} $1.20000005
    4$ {\overline{V}}_{3} $–45.0000000021$ {r}_{\mathrm{S}0} $1.24034297
    5$ {\overline{V}}_{4} $34.9734268222$ {r}_{\mathrm{V}0} $1.20000005
    6$ {\overline{W}}_{\mathrm{S}0} $27.7965812723$ {r}_{\mathrm{S}\mathrm{O}0} $1.25000000
    7$ {\overline{W}}_{\mathrm{S}1} $–0.8797226024$ {r}_{\mathrm{C}} $1.25000000
    8$ {\overline{W}}_{\mathrm{S}2} $1.8755728025$ \xi $0.11376333
    9$ {\overline{W}}_{\mathrm{S}3} $1.0761344426$ {a}_{\mathrm{R}1} $0.02999442
    10$ {\overline{W}}_{\mathrm{V}0} $65.9998703027$ {a}_{\mathrm{S}1} $0.02947382
    11$ {\overline{W}}_{\mathrm{V}1} $5.4015379028$ {a}_{\mathrm{V}1} $–0.03926823
    12$ {\overline{W}}_{\mathrm{V}2} $0.0888160029$ {a}_{\mathrm{S}\mathrm{O}1} $0.00000000
    13$ {\overline{W}}_{\mathrm{V}3} $–5.0999999030$ {r}_{\mathrm{R}1} $–0.00313194
    14$ {\overline{V}}_{\mathrm{S}\mathrm{O}0} $10.0000000031$ {r}_{\mathrm{S}1} $0.18612149
    15$ {\overline{W}}_{\mathrm{S}\mathrm{O}0} $1.0000000032$ {r}_{\mathrm{V}1} $0.01397228
    16$ {a}_{\mathrm{R}0} $0.5215224633$ {r}_{\mathrm{S}\mathrm{O}1} $0.00000000
    17$ {a}_{\mathrm{S}0} $0.34999999
    DownLoad: CSV

    表 6  APOMHI与SOOPA两种模型下理论与实验偏差比较

    Table 6.  Deviation of theoretical results and experimental data with APOMHI and SOOPA model respectively.

    靶核 APOMI SPOOA
    $ \chi _{\text{f}}^2 $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    9Be 1.39 1.39 2.33 2.33
    10B 2.17 2.17 2.89 2.89
    11B 4.02 4.02 4.51 4.51
    13C 286.27 286.27 467.75 467.75
    16O 21.00 162.44 91.72 32.16 147.74 89.95
    24Mg 3.11 9.74 6.43 0.38 97.82 49.10
    27Al 17.60 17.60 16.52 16.52
    28Si 15.43 15.43 7.72 7.72
    44Ca 12.05 12.05 6.10 6.10
    58Ni 88.30 646.73 367.51 97.93 2046.43 1072.18
    60Ni 21.25 1404.33 712.79 35.38 3194.35 1614.86
    64Ni 43.28 43.28 42.01 42.01
    63Cu 5.06 5.06 4.42 4.42
    65Cu 3.90 3.90 5.24 5.24
    64Zn 120.98 120.98 579.60 579.60
    74Ge 2165.57 2165.57 2468.20 2468.20
    90Zr 498.31 498.31 69.48 69.48
    92Mo 10.45 10.45 8.45 8.45
    112Sn 74.11 74.11 88.79 88.79
    116Sn 403.03 403.03 1026.08 1026.08
    148Nd 42.07 42.07 21.85 21.85
    150Sm 9.20 9.20 5.31 5.31
    174Yb 12.57 12.57 9.34 9.34
    188Os 80.49 80.49 1422.2 1422.20
    192Os 13.57 13.57 3.84 3.84
    194Pt 26.65 26.65 30.66 30.66
    197Au 32.45 32.45 15.85 15.85
    208Pb 33.29 33.29 14.77 14.77
    总(以上多核综合) 120.56 361.85 181.87 193.12 772.73 326.79
    7Li 166.49 166.49 85.95 85.95
    12C 42.23 32018.88 16030.55 42.54 6563.20 3302.87
    120Sn 229.43 229.43 354.57 354.57
    14C 21.35 21.35 30.14 30.14
    61Ni 14.08 14.08 137.80 137.80
    DownLoad: CSV

    表 7  7Li, 12C和120Sn靶核单独调参的$ {\chi ^2} $结果

    Table 7.  The $ {\chi ^2} $ results for 7Li, 12C and 120Sn with individual parameter.

    靶核 APOMHI(单核) SOOPA(单核)
    $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    7Li 5.79 5.79 5.86 5.86
    12C 84.23 1437.90 761.07 109.70 2501.96 1305.83
    120Sn 24.84 24.84 15.87 15.87
    DownLoad: CSV
  • [1]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [2]

    Pruitt C D, Escher J E, Rahman R 2023 Phys. Rev. C 107 014602Google Scholar

    [3]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskii E S, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [4]

    Moumene I, Bonaccorso A 2023 Phys. Rev. C 108 044609Google Scholar

    [5]

    Becchetti F D, Greenlees G. W. 1969 Phys. Rev. 182 1190Google Scholar

    [6]

    Jeukenne J P, Lejeune A, Mahaux C 1977 Phys. Rev. C 16 80Google Scholar

    [7]

    Jeukenne J P, Lejeune A, Mahaux C 1976 Phys. Rep. 25 83Google Scholar

    [8]

    Bauge E, Delaroche J P, Girod M 1998 Phys. Rev. C 58 1118Google Scholar

    [9]

    Bauge E, Delaroche J P, Girod M 2001 Phys. Rev. C 63 024607Google Scholar

    [10]

    Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S 2015 Phys. Rev. C 91 024618Google Scholar

    [11]

    Soukhovitskiĩ E S, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [12]

    Mahaux C, Sartor R 1991 Adv. Nucl. Phys. (Boston, MA: Springer US) pp1–223

    [13]

    Quesada J M, Capote R, Molina A, Lozano M 2003 Phys. Rev. C 67 067601Google Scholar

    [14]

    Morillon B, Romain P 2007 Phys. Rev. C 76 044601Google Scholar

    [15]

    Mueller J M, Charity R J, Shane R, Sobotka L G, Waldecker S J, Dickhoff W H, Crowell A S, Esterline J H, Fallin B, Howell C R, Westerfeldt C, Youngs M, Crowe B J, Pedroni R S 2011 Phys. Rev. C 83 064605Google Scholar

    [16]

    Mahzoon M H, Charity R J, Dickhoff W H, Dussan H, Waldecker S J 2014 Phys. Rev. Lett. 112 162503Google Scholar

    [17]

    Atkinson M C, Dickhoff W H 2019 Phys. Lett. B 798 135027Google Scholar

    [18]

    Zhao X, Sun W, Capote R, Capote R, Soukhovitskiĩ E S, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [19]

    An H, Cai C 2006 Phys. Rev. C 73 054605Google Scholar

    [20]

    Han Y, Shi Y, Shen Q 2006 Phys. Rev. C 74 044615Google Scholar

    [21]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [22]

    Li X H, Chen L W 2012 Nucl. Phys. A 874 62Google Scholar

    [23]

    Liang C T, Li X H, Cai C H 2009 J. Phys. G: Nucl. Part. Phys. 36 085104Google Scholar

    [24]

    Li X, Liang C, Cai C 2007 Nucl. Phys. A 789 103Google Scholar

    [25]

    Shen Q B 2002 Nucl. Sci. Eng. 141 78Google Scholar

    [26]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 98 024619Google Scholar

    [27]

    Xu Y, Han Y, Liang H, Wu Z, Guo H, Cai C 2019 Phys. Rev. C 99 034618Google Scholar

    [28]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 97 014615Google Scholar

    [29]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2021 Chin. Phys. C 45 114103Google Scholar

    [30]

    Raynal J 1994 Notes on ECIS94 CEA Saclay Report CEA-N-2772

    [31]

    Roth H A, Christiansson J E, Dubois J 1980 Nucl. Phys. A 343 148Google Scholar

    [32]

    Anjos R M, Added N, Carlin N, Fante L, Figueira M C S, Matheus R, Szanto E M, Tenreiro C, Szanto A 1994 Phys. Rev. C 49 2018Google Scholar

    [33]

    Rudchik A T, Shyrma Y O, Kemper K W, Rusek K, Koshchy E I, Kliczewski S, B 2011 Nucl. Phys. A 852 1Google Scholar

    [34]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980Google Scholar

    [35]

    Thomas J, Chen Y T, Hinds S, Meredith D, Olson M 1986 Phys. Rev. C 33 1679Google Scholar

    [36]

    Szilner S, Haas F, Basrak Z, Freeman R M, Morsad A, Nicoli M P 2006 Nucl. Phys. A 779 21Google Scholar

    [37]

    Tabor S L, Geesaman D F, Henning W, Kovar D G, Rehm K E, Prosser F W 1978 Phys. Rev. C 17 2136Google Scholar

    [38]

    Bernas M, Pougheon F, Roy-Stephan M, Berg G P A, Berthier B, Le J P 1980 Phys. Rev. C 22 1872Google Scholar

    [39]

    Rascher R, Muller W F J, Lieb K P 1979 Phys. Rev. C 20 1028Google Scholar

    [40]

    Eisen Y, Tserruya I, Eyal Y, Fraenkel Z, Hillman M 1977 Nucl. Phys. A 291 459Google Scholar

    [41]

    Bozek E, De Castro-Rizzo D M, Cavallaro S, Delaunay B , Delaunay J, Dumont H, D'onofrio A, Saint-Laurent M G, Sperduto L, Terrasi F 1986 Nucl. Phys. A 451 171Google Scholar

    [42]

    Borges A M, Silva C P, Pereira D, Chamon L C, Rossi E S, 1992 Phys. Rev. C 46 2360Google Scholar

    [43]

    Silva C P, Pereira D, Chamon L C, Rossi E S 1997 Phys. Rev. C 55 3155Google Scholar

    [44]

    Rossi E S, Pereira D, Chamon L C, Silva C P, Alvarez M A G, Gas L R 2002 Nucl. Phys. A 707 325Google Scholar

    [45]

    Alves J J S, Gomes P R S, Lubian J, Chamon L C, Pereira D, Anjos R M 2005 Nucl. Phys. A 748 59Google Scholar

    [46]

    Rehm K E, Koerner H J, Richter M, Rother H P, Schiffer J P, Spieler H 1975 Phys. Rev. C 12 1945Google Scholar

    [47]

    Chamon L C, Pereira D, Rossi E S, Silva C P, Razeto G R, Borges A M, Gomes L C, Sala O 1992 Phys. Lett. B 275 29Google Scholar

    [48]

    Salem-Vasconcelos S, Takagui E M, Bechara M J, Koide K, Dietzsch O, Baur A 1994 Phys. Rev. C 50 927Google Scholar

    [49]

    Jia H M, Lin C J, Xu X X, Zhang H Q, Liu Z H, Yang L, Zhang S T, Bao P F, Sun L J 2012 Phys. Rev. C 86 044621Google Scholar

    [50]

    Jha V, Roy B J, Chatterjee A, Machner H 2004 Eur. Phys. J. A 19 347Google Scholar

    [51]

    Benjelloun M, Galster W, Vervier J 1993 Nucl. Phys. A 560 715Google Scholar

    [52]

    Bohlen H G, Hildenbrand K D, Gobbi A, Kubo K I 1975 Z. Phys. A: Hardrons Nucl. 273 211Google Scholar

    [53]

    Robertson B C, Sample J T, Goosman D R, Nagtani K, Jones K W 1971 Phys. Rev. C 4 2176Google Scholar

    [54]

    Broda R, Ishihara M, Herskind B, Oeschler H, Ogaza S, Ryde H 1975 Nucl. Phys. A 248 356Google Scholar

    [55]

    Hinde D J, Charity R J, Foote G S, Leigh J R, Newton J O, Ogaza S, Chattejee A 1986 Nucl. Phys. A 452 550Google Scholar

    [56]

    Charity R J, Leigh J R, Bokhorst J J M, Chatterjee A, Foote G S, Hinde D J, Newton J O, Ogaza S, Ward D 1986 Nucl. Phys. A 457 441Google Scholar

    [57]

    Sahu P K, Choudhury R K, Biswas D C, Nayak B K 2001 Phys. Rev. C 64 014609Google Scholar

    [58]

    van der Plicht J, Britt H C, Fowler M M, Fraenkel Z, Gavron A, Wilhelmy J B 1983 Phys. Rev. C 28 2022Google Scholar

    [59]

    Laveen P V, Prasad E, Madhavan N, Pal S, Sadhukhan J, Nath S, Gehlot J, Jhingan A, Varier K M, Thomas R G 2015 J. Phys. G: Nucl. Part. Phys. 42 95105Google Scholar

    [60]

    Yanez R, Loveland W, Barrett J S, Yao L 2013 Phys. Rev. C 88 14606Google Scholar

    [61]

    Appannababu S, Mukherjee S, Singh N L, Rath P K, Kumar G K 2009 Phys. Rev. C 80 24603Google Scholar

    [62]

    Vulgaris E, Grodzins L, Steadman S G, Ledoux R 1986 Phys. Rev. C 33 2017Google Scholar

    [63]

    Rudchik A A, Rudchik A T, Kliczewski S, Koshchyc E I, Ponkratenko O A, 2007 Nucl. Phys. A 785 293Google Scholar

    [64]

    Heusch B, Beck C, Coffin J P, Engelstein P, Freeman R M, Guillaume G, Haas F, Wagner P 1982 Phys. Rev. C 26 542Google Scholar

    [65]

    Beck C, Haas F, Freeman R M, Heusch B, Coffin J P, Guillaume G, Rami F, Wagner P 1985 Nucl. Phys. A 442 320Google Scholar

    [66]

    Kovar D G, Geesaman D F, Braid T H, Eisen Y, Henning W, Ophel T R, Paul M, Rehm K E, Sanders S J 1979 Phys. Rev. C 20 1305Google Scholar

    [67]

    Sperr P, Braid T H, Eisen Y, Kovar D G, Prosser F W, Schiffer J P, Tabor S L, Vigdor S 1976 Phys. Rev. Lett. 37 321Google Scholar

    [68]

    Steinbach T K, Vadas J, Schmidt J, Haycraft C, Hudan S, deSouza R T 2014 Phys. Rev. C 90 41603Google Scholar

    [69]

    Eyal Y, Beckerman M, Chechik R, Fraenkel Z, Stocker H 1976 Phys. Rev. C 13 1527Google Scholar

    [70]

    Szilner S, Nicoli M P, Basrak Z, Freeman R M, Haas F, Morsad A 2001 Phys. Rev. C 64 064614Google Scholar

    [71]

    Al-Abdullah T, Carstoiu F, Gagliardi C A 2014 Phys. Rev. C 89 064602Google Scholar

    [72]

    Rudchik A T, Shyrma Y O, Kemper K W, Piasecki E, Romanyshyna G P, Stepanenko Y M, Strojek I, Sakuta S B, Budzanowski A, Głowacka L, Skwirczyńska I, Siudak R, Choiński J, Szczurek A 2011 Eur. Phys. J. A 47 1Google Scholar

    [73]

    Deb N K, Kalita K, Rashid H A, Das A, Nath S, Gehlot J, Madhavan N, Biswas R, Sahoo R N, Giri P K, Parihari A, Rai N K, Biswas S, Mahato A, Roy B J 2022 Phys. Rev. C 105 054608Google Scholar

    [74]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [75]

    Wang L, Zhao K, Tian J L 2013 Nucl. Phys. Rev. 30 289Google Scholar

    [76]

    Chen J B, Yang Y Y, Wang J S, Wang Q, Jin S L, Ma P, Ma J B, Huang M R, Han J L, Bai Z, Hu Q, Jin L, Li R, Zhao M H 2014 Nucl. Phys. Rev. 31 53Google Scholar

    [77]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2020 Chin. Phys. C 44 124103Google Scholar

    [78]

    Zamrun F M, Hagino K 2008 Phys. Rev. C 77 014606Google Scholar

    [79]

    Xu Y L, Han Y L, Liang H Y, Wu Z D, Guo H R, Cai C H 2020 Chin. Phys. C 44 034101Google Scholar

    [80]

    Beck C, Keeley N, Diaz-Torres A 2007 Phys. Rev. C 75 054605Google Scholar

    [81]

    Pieper S C, Macfarlane M H, Gloeckner D H, Kovar D G, Becchetti F D, Harvey B G, Hendrie D L, Homeyer H, Mahoney J, Pühlhofer F, Oertzen W, Zisman M S 1978 Phys. Rev. C 18 180Google Scholar

    [82]

    Al-Ghamdi A H, Ibraheem A A, Hamada S 2022 J. Taibah Univ. Sci. 16 1026Google Scholar

  • [1] DU Wenqing, ZHAO Xiuniao. Research on Lane-consistent dispersive optical-model potential for 208Pb. Acta Physica Sinica, 2025, 74(5): 052401. doi: 10.7498/aps.74.20241273
    [2] Hou Yan-Jie, Hu Chun-Guang, Zhang Lei, Chen Xue-Jiao, Fu Xing, Hu Xiao-Tang. Characterization of effective conductive layer of nano organic thin film using reflectance spectroscopy. Acta Physica Sinica, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [3] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [4] You Yang-Ming, Wang Bing-Zhang, Wang Ji-You. Optical model potential of antiproton atoms with nuclear polarization correction. Acta Physica Sinica, 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [5] Lu Gong-Ru, Li Xin-Qiang, Li Yan-Min, Su Fang. Study of neutral Bs mixing in a family non-universal Z' model. Acta Physica Sinica, 2012, 61(24): 241301. doi: 10.7498/aps.61.241301
    [6] Lin Qing. Linear optical realization of universal unambiguous discrimination of quantum state. Acta Physica Sinica, 2009, 58(9): 5978-5982. doi: 10.7498/aps.58.5978
    [7] Guo Zeng-Yuan, Cao Bing-Yang. A general heat conduction law based on the concept of motion of thermal mass. Acta Physica Sinica, 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [8] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [9] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [10] Ren Hao, Gu De-Wei, Pan Zheng-Quan, Ying He-Ping. A study on critical universality of the random-bond Potts models with self-dual quenched randomness. Acta Physica Sinica, 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [11] He Mao-Gang, Liu Zhi-Gang. . Acta Physica Sinica, 2002, 51(5): 1004-1010. doi: 10.7498/aps.51.1004
    [12] Deng Wen-Ji. . Acta Physica Sinica, 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [13] ZHANG HU-YONG, MA YU-GANG, SU QIAN-MIN, SHEN WEN-QING, CAI XIANG-ZHOU, FANG DE-QING, HU PENG-YUN, HAN DING-DING. ISOSPIN EFFECTS ON THE LIGHT PARTICLES IN INTERMEDIATE ENERGY HEAVY ION COLLISIONS. Acta Physica Sinica, 2001, 50(2): 193-197. doi: 10.7498/aps.50.193
    [14] XU XIAO-HU, SHEN JIAN. A PHENOMELOGICAL MODEL FOR FERROELECTRIC SUPERLATTICES. Acta Physica Sinica, 1999, 48(11): 2142-2145. doi: 10.7498/aps.48.2142
    [15] SUN FENG-JIU. REPRESENTATION TRANSFORMATION AND THE GENERAL METHOD FOR SOLVING OPTICAL RELATION EQUATIONS IN OPERATOR OPTICS. Acta Physica Sinica, 1989, 38(4): 653-658. doi: 10.7498/aps.38.653
    [16] OU FA, CAI YONG-QIANG. THE GENERALIZED DYNAMICAL EQUATION OF OPTICAL BISTABILITY AND LASER AND ITS STABILITY ANALYSIS. Acta Physica Sinica, 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [17] WU ZI-YU, WANG KE-LIN, LAN HUI-BIN, ZHANG ZHENG-GANG, XIAN DING-CHANG. A PHENOMENOLOGICAL MODEL FOR 0- MESON (Ⅱ)——THE ELECTROMAGNETIC FORM FACTOR. Acta Physica Sinica, 1987, 36(12): 1618-1623. doi: 10.7498/aps.36.1618
    [18] Wu Zi-yu;Lan Hui-bin; Wang Ke-lin; Liu Yao-yan. A PHENOMENOLOGICAL MODEL FOR O- MESON (I). Acta Physica Sinica, 1987, 36(8): 1048-1055. doi: 10.7498/aps.36.1048
    [19] WANG GUANG-RUI, CHEN SHI-GANG. UNIVERSAL CONSTANTS AND UNIVERSAL FUNCTIONS OF PERIQO-N-TUPLING SEQUENCES IN ONE-DIMENSIONAL UNIMODAL MAPPINGS. Acta Physica Sinica, 1986, 35(1): 58-65. doi: 10.7498/aps.35.58
    [20] WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1984, 33(7): 1008-1016. doi: 10.7498/aps.33.1008
Metrics
  • Abstract views:  820
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  08 July 2025
  • Available Online:  24 July 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回