Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relativistic density functional theory in 3D lattice: Fission barriers with PC-PK1

HUANG Yihan LI Bo ZHAO Pengwei

Citation:

Relativistic density functional theory in 3D lattice: Fission barriers with PC-PK1

HUANG Yihan, LI Bo, ZHAO Pengwei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nuclear fission is a decay process by which a heavy nucleus splits into two or more lighter nuclei. It plays a crucial role in the synthesis of superheavy elements, the rapid neutron-capture process, nuclear energy application and so on. The fission barrier is an important property of heavy nuclei, because its height and width directly relate with the lifetime of heavy nuclei, and affect charge yield, mass yield, and kinetic energy of fission fragments. In our study, the potential energy curves of actinide nuclei are obtained from the relativistic density functional theory in 3D lattice when the axial symmetry, reflection symmetry and $V_4$ symmetry are broken in turn. The effects of all the quadrupole and octupole deformation degrees of freedom on the inner barrier, outer barrier, and the fission isomeric state are investigated. It is found that breaking the reflection symmetry can lower the outer fission barriers significantly, breaking the axial symmetry can lower both the inner and outer barriers, breaking the $V_4$ symmetry has little effect on the inner and outer barriers, and the fission isomeric state is almost unaffected by symmetry breaking. Based on the relativistic density functional PC-PK1 and monopole pairing interaction, our results well reproduce the empirical values of the inner and outer barriers extracted from experiments, and the energies of the fission isomeric states are slightly underestimated. All the data presented in this paper is openly available at https://www.doi.org/10.57760/sciencedb.j00213.00229.
  • 图 1  $ Z=94 $的偶偶核中子对隙(蓝色空心方框)和实验上提取的中子经验对隙(黑色实心方框)随质量数的变化. $ N=146 $的偶偶核的质子对隙(红色空心圆)和实验上提取的质子经验对隙(黑色实心圆)随质量数的变化

    Figure 1.  The neutron pairing gap calculated by 3DRDFT (blue open square) and extracted from experiments (black solid square) versus mass number for the even-even nuclei with $ Z = 94 $. The proton pairing gap calculated by 3DRDFT (red open circle) and extracted from experiments (black solid circle) versus mass number for the even-even nuclei with $ N = 146 $.

    图 2  $ ^{240}{\rm{Pu}} $分别在保持轴对称和反射对称性(紫色点划线), 轴对称性(蓝色短划线), $ V_{4} $对称性(红色实线)时的势能曲线以及$ V_{4} $对称性破缺后在裂变内垒, 外垒和同核异能态附近的势能(绿色空心圆). 经验裂变内垒$ B_f^i $, 外垒$ B_f^o $, 和同核异能态$ E_{{\rm{iso}}} $的能量由黑色横线标记. 取$ ^{240}{\rm{Pu}} $的基态能量为$ 0 $

    Figure 2.  The potential energy curve of $ ^{240}{\rm{Pu}} $ with axial symmetry and reflection symmetry (purple dot-dashed line), axial symmetry (blue dashed line), $ V_{4} $ symmetry (red solid line) and potential energy of $ ^{240}{\rm{Pu}} $ nearby inner barrier, outer barrier, isomeric state with $ V_{4} $ symmetry breaking (green open circle). The empirical inner barrier $ B_{f}^{i} $, outer barrier $ B_{f}^{o} $ and isomeric state $ E_{iso} $ is denoted by the black dash line. The energy is normalized with respect to the energy of the ground state.

    表 1  在$ V_{4} $对称性破缺时, 7 个锕系原子核的裂变内垒, 外垒和同核异能态的能量经验值[75,76]$ \Delta E_{{\rm{Exp}}} $和基于3DRDFT计算的能量$ \Delta E_{{\rm{Theo}}} $, 四极形变$ \beta_{20} $, $ \beta_{22} $和八级形变$ \beta_{30} $, $ \beta_{31} $, $ \beta_{32} $, $ \beta_{33} $

    Table 1.  The energies extracted from experiments $ \Delta E_{{\rm{Exp}}} $ and the energies $ \Delta E_{{\rm{Theo}}} $, quadrupole deformations $ \beta_{20} $, $ \beta_{22} $ and octupole deformations $ \beta_{30} $, $ \beta_{31} $, $ \beta_{32} $, $ \beta_{33} $ of fission inner barrier, outer barrier, and isomeric states of 7 actinide nuclei obtained by 3DRDFT with $ V_{4} $ symmetry breaking.

    核素 $ ^{232}{\rm{U}} $ $ ^{234}{\rm{U}} $ $ ^{236}{\rm{U}} $ $ ^{238}{\rm{U}} $ $ ^{236}{\rm{Pu}} $ $ ^{238}{\rm{Pu}} $ $ ^{240}{\rm{Pu}} $
    内垒 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ 4.90 4.80 5.00 6.30 - 5.60 6.05
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 4.59 5.24 5.13 5.70 5.94 5.75 6.12
    $ \beta_{20} $ 0.60 0.60 0.60 0.65 0.60 0.60 0.65
    $ \beta_{22} $ 0.04 0.06 0.06 0.06 0.06 0.06 0.06
    $ \beta_{30} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    外垒 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ 5.40 5.50 5.67 5.50 - 5.10 5.15
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 5.45 6.06 5.58 5.78 5.15 5.02 5.12
    $ \beta_{20} $ 1.20 1.20 1.35 1.35 1.20 1.25 1.40
    $ \beta_{22} $ 0.03 0.03 0.03 0.03 0.03 0.03 0.02
    $ \beta_{30} $ 0.41 0.37 0.39 0.50 0.35 0.30 0.51
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.02 0.01 0.00 0.00 0.02 0.01 0.01
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    同核异能态 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ - - 2.3 2.6 - 2.4 2.25
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 2.1 1.2 1.2 1.2 1.4 1.4 1.4
    $ \beta_{20} $ 0.85 0.90 0.90 1.00 0.90 0.90 0.95
    $ \beta_{22} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{30} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    DownLoad: CSV
  • [1]

    Schmidt K H, Jurado B 2018 Rep. Prog. Phys. 81 106301Google Scholar

    [2]

    Bender M, Bernard R, Bertsch G, Chiba S, Dobaczewski J, Dubray N, Giuliani S A, Hagino K, Lacroix D, Li Z, Magierski P, Maruhn J, Nazarewicz W, Pei J, Péru S, Pillet N, Randrup J, Regnier D, Reinhard P G, Robledo L M, Ryssens W, Sadhukhan J, Scamps G, Schunck N, Simenel C, Skalski J, Stetcu I, Stevenson P, Umar S, Verriere M, Vretenar D, Warda M, Åberg S 2020 J. Phys. G: Nucl. Part. Phys. 47 113002Google Scholar

    [3]

    Schunck N, Robledo L M 2016 Rep. Prog. Phys. 79 116301Google Scholar

    [4]

    Schunck N, Regnier D 2022 Prog. Part. Nucl. Phys. 125 103963Google Scholar

    [5]

    Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [6]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [7]

    Möller P, Sierk A J, Ichikawa T, Iwamoto A, Bengtsson R, Uhrenholt H, Åberg S 2009 Phys. Rev. C 79 064304

    [8]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501Google Scholar

    [9]

    Korobkin O, Rosswog S, Arcones A, Winteler C 2012 Mon. Not. R. Astron. Soc. 426 1940Google Scholar

    [10]

    Just O, Bauswein A, Pulpillo R A, Goriely S, Janka H T 2015 Mon. Not. R. Astron. Soc. 448 541Google Scholar

    [11]

    Chen J W, Pei J C, Qiang Y, Chi J H 2023 Chin. Phys. Lett. 40 012401Google Scholar

    [12]

    Möller P, Madland D, Sierk A, Iwamoto A 2001 Nature 409 785790

    [13]

    Pomorski K, Dudek J 2003 Phys. Rev. C 67 044316Google Scholar

    [14]

    Ivanyuk F A, Pomorski K 2009 Phys. Rev. C 79 054327Google Scholar

    [15]

    Kowal M, Jachimowicz P, Sobiczewski A 2010 Phys. Rev. C 82 014303

    [16]

    Royer G, Jaffré M, Moreau D 2012 Phys. Rev. C 86 044326Google Scholar

    [17]

    Mamdouh A, Pearson J, Rayet M, Tondeur F 2001 Nucl. Phys. A 679 337Google Scholar

    [18]

    Bürvenich T, Bender M, Maruhn J A, Reinhard P G 2004 Phys. Rev. C 69 014307Google Scholar

    [19]

    Samyn M, Goriely S, Pearson J M 2005 Phys. Rev. C 72 044316Google Scholar

    [20]

    Minato F, Chiba S, Hagino K 2009 Nucl. Phys. A 831 150Google Scholar

    [21]

    Egido J L, Robledo L M 2000 Phys. Rev. Lett. 85 1198Google Scholar

    [22]

    Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304

    [23]

    McDonnell J, Schunck N, Nazarewicz W 2013 in Fission and Properties of Neutron-Rich Nuclei: Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (ICFN5) (Singapore: World Scientific Publishing Company) pp597–604

    [24]

    Staszczak A, Baran A, Nazarewicz W 2013 Phys. Rev. C 87 024320Google Scholar

    [25]

    Schunck N, Duke D, Carr H, Knoll A 2014 Phys. Rev. C 90 054305

    [26]

    Blum V, Maruhn J A, Reinhard P G, Greiner W 1994 Phys. Lett. B 323 262Google Scholar

    [27]

    Zhang W, Zhang S S, Zhang S Q, Meng J 2003 Chin. Phys. Lett. 20 1694Google Scholar

    [28]

    Lü H F, Geng L S, Meng J 2006 Chin. Phys. Lett. 23 2940Google Scholar

    [29]

    Li Z P, Nikšić T, Vretenar D, Ring P, Meng J 2010 Phys. Rev. C 81 064321Google Scholar

    [30]

    Abusara H, Afanasjev A V, Ring P 2010 Phys. Rev. C 82 044303

    [31]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. C 85 011301Google Scholar

    [32]

    Lu B N, Zhao J, Zhao E G, Zhou S 2012 EPJ Web Conf. 38 05003Google Scholar

    [33]

    Abusara H, Afanasjev A V, Ring P 2012 Phys. Rev. C 85 024314Google Scholar

    [34]

    Prassa V, Nikšić T, Lalazissis G A, Vretenar D 2012 Phys. Rev. C 86 024317Google Scholar

    [35]

    Möller P, Sierk A J, Iwamoto A 2004 Phys. Rev. Lett. 92 072501Google Scholar

    [36]

    Brack M, Damgaard J, Jensen A S, Pauli H C, Strutinsky V M, Wong C Y 1972 Rev. Mod. Phys. 44 320Google Scholar

    [37]

    Pashkevich V 1969 Nucl. Phys. A 133 400Google Scholar

    [38]

    Möller P, Nilsson S G 1970 Phys. Lett. B 31 283

    [39]

    Randrup J, Larsson S E, Möller P, Nilsson S G, Pomorski K, Sobiczewski A 1976 Phys. Rev. C 13 229

    [40]

    Pashkevich V 1971 Nucl. Phys. A 169 275Google Scholar

    [41]

    Pauli H C, Ledergerber T, Brack M 1971 Phys. Lett. B 34 264Google Scholar

    [42]

    Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121Google Scholar

    [43]

    Meng J 2016 Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) p716

    [44]

    Girod M, Grammaticos B 1983 Phys. Rev. C 27 2317Google Scholar

    [45]

    Rutz K, Maruhn J, Reinhard P G, Greiner W 1995 Nucl. Phys. A 590 680Google Scholar

    [46]

    Bonneau L, Quentin P, Samsœn D 2004 Eur. Phys. J. A 21 391Google Scholar

    [47]

    Ryssens W, Scamps G, Goriely S, Bender M 2022 Eur. Phys. J. A 50 246

    [48]

    Ryssens W, Scamps G, Goriely S, Bender M 2023 Eur. Phys. J. A 59 96Google Scholar

    [49]

    Lu B N, Zhao J, Zhao E G, Zhou S G 2014 Phys. Rev. C 89 014323Google Scholar

    [50]

    马中骐 2006 物理学中的群论(北京: 科学出版社) 第22页

    Ma Z Q 2006 Group Theory in Physics (Peking: Science Press) p22

    [51]

    Ren Z X, Zhang S Q, Meng J 2017 Phys. Rev. C 95 024313Google Scholar

    [52]

    Li B, Ren Z X, Zhao P W 2020 Phys. Rev. C 102 044307Google Scholar

    [53]

    Xu F F, Li B, Ren Z X, Zhao P W 2024 Phys. Rev. C 109 014311

    [54]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193Google Scholar

    [55]

    Ren Z X, Zhao P W 2020 Phys. Rev. C 102 021301Google Scholar

    [56]

    Vretenar D, Afanasjev A, Lalazissis G, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [57]

    Meng J, Peng J, Zhang S Q, Zhao P W 2013 Front. Phys. 8 55Google Scholar

    [58]

    Ren Z X, Zhang S Q, Zhao P W, N I, Maruhn J A, Meng J 2019 Sci. China Phys. Mech. Astron. 62 112062Google Scholar

    [59]

    Ren Z X, Zhao P W, Zhang S Q, Meng J 2020 Nucl. Phys. A 996 121696Google Scholar

    [60]

    Xu F F, Li B, Ring P, Zhao P W 2024 Phys. Lett. B 856 138893Google Scholar

    [61]

    Ren Z X, Zhao P W, Meng J 2022 Phys. Rev. C 105 L011301

    [62]

    Li B, Zhao P W, Meng J 2024 Phys. Lett. B 856 138877Google Scholar

    [63]

    Xu F F, Wang Y K, Wang Y P, Ring P, Zhao P W 2024 Phys. Rev. Lett. 133 022501Google Scholar

    [64]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319Google Scholar

    [65]

    Yang Y L, Wang Y K, Zhao P W, Li Z P 2021 Phys. Rev. C 104 054312Google Scholar

    [66]

    Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308Google Scholar

    [67]

    Ryssens W, Hellemans V, Bender M, Heenen P H 2015 Comput. Phys. Commun. 190 231Google Scholar

    [68]

    Bender M, Rutz K, Reinhard P, Maruhn J A 2000 Eur. Phys. J. A 8 59Google Scholar

    [69]

    Staszczak A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85Google Scholar

    [70]

    Wang M, Huang W, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [71]

    Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [72]

    Wang M, Audi G, Kondev F, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [73]

    Agbemava S E, Afanasjev A V, Ray D, Ring P 2014 Phys. Rev. C 89 054320Google Scholar

    [74]

    Ring P, Schuck P 1980 The Nuclear Many-Body Problem (Heidelberg: Springer Berlin) pp244–279

    [75]

    Capote R, Herman M, Obložinský P, Young P, Goriely S, Belgya T, Ignatyuk A, Koning A, Hilaire S, Plujko V, Avrigeanu M, Bersillon O, Chadwick M, Fukahori T, Ge Z, Han Y, Kailas S, Kopecky J, Maslov V, Reffo G, Sin M, Soukhovitskii E, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [76]

    Singh B, Zywina R, Firestone R B 2002 Nucl. Data Sheets 97 241Google Scholar

  • [1] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, doi: 10.7498/aps.67.20172022
    [2] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, doi: 10.7498/aps.65.048101
    [3] Wang Hui-Hui, Meng Lin, Liu Da-Gang, Liu La-Qun, Yang Chao. Numerical optimization study of PIC/PSO for RBWO. Acta Physica Sinica, doi: 10.7498/aps.62.138401
    [4] Zhang Yi. Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system. Acta Physica Sinica, doi: 10.7498/aps.61.214501
    [5] Wang Xia, Wang Zi-Xia, Lü Hao, Zhao Qiu-Ling. Short-cut transformation from one-dimensional to three-dimensional interference pattern by holographic simulation. Acta Physica Sinica, doi: 10.7498/aps.59.4656
    [6] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, doi: 10.7498/aps.59.7452
    [7] Zhang Min-Cang. A relativistic non-harmonic oscillator potential and pseudospin symmetry. Acta Physica Sinica, doi: 10.7498/aps.58.61
    [8] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, doi: 10.7498/aps.57.6265
    [9] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, doi: 10.7498/aps.55.171
    [10] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, doi: 10.7498/aps.54.2985
    [11] Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, doi: 10.7498/aps.54.1464
    [12] Jia Li-Qun. A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica, doi: 10.7498/aps.52.1039
    [13] Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, doi: 10.7498/aps.52.1561
    [14] Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, doi: 10.7498/aps.52.2945
    [15] Fu Jing-Li, Chen Li-Qun, Xie Feng-Ping. Perturbation to the symmetries of relativistic Birkhoffian systems and the inver se problems. Acta Physica Sinica, doi: 10.7498/aps.52.2664
    [16] LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI. BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.50.383
    [17] FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.50.390
    [18] FU JING-LI, WANG XIN-MIN. LIE SYMMETRIES AND CONSERVED QUANTITIES OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica, doi: 10.7498/aps.49.1023
    [19] ZHAO ZHONG-XIN, LI JIA-MING. NON- RELATIVISTIC AND RELATIVISTIC ATOMIC CONFIGURATION INTERACTION THEORY EXCITATION ENERGY AND RADIATIVE TRANSITION PROBABILITY. Acta Physica Sinica, doi: 10.7498/aps.34.1469
    [20] T. S. CHANG. RELATIVISTIC NATURE OF COULOMBIAN INTERACTIONS. Acta Physica Sinica, doi: 10.7498/aps.8.123
Metrics
  • Abstract views:  133
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2025
  • Accepted Date:  16 October 2025
  • Available Online:  03 December 2025
  • /

    返回文章
    返回