|
|
基于跟驰模型列车运行优化控制模拟研究 |
叶晶晶1, 李克平2 3, 金新民1 |
1. 北京交通大学电气工程学院, 北京 100044; 2. 北京交通大学轨道交通控制与安全国家重点实验室, 北京 100044; 3. 北京交通大学城市轨道交通北京实验室, 北京 100044 |
Simulation of optimal control of train movement based on car-following model |
Ye Jing-Jing1, Li Ke-Ping2 3, Jin Xin-Min1 |
1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; 3. Beijing Laboratory of Urban Rail Transit, Beijing Jiaotong University, Beijing 100044, China |
|
摘要: 列车运行的优化控制是降低运输成本,提高运输服务质量以及实现轨道交通可持续发展的重要方式. 本文在传统优化速度跟驰模型的基础上,以能量节约为目标提出了一种改进的模拟模型,用以模拟分析城市轨道交通系统中列车运行的优化控制. 所提出的模型是通过在经典的优化速度跟驰模型(见Phys. Rev. E 51 1035 Bando等,1995)中引入新的目标优化速度函数来实现在复杂限速条件下列车运行的优化控制. 数值模拟则是以北京市地铁亦庄线为例,利用亦庄线实测数据开展研究. 结果表明,所提出的模型能够很好地描述复杂限速条件下列车运行的动态特性,模拟测量得到的结果和亦庄线的实测数据较为符合,由此说明所提出模型的有效性. 进一步,通过分析列车运行时空图,列车运行的速度变化及运行时间等,讨论了复杂环境下列车流的时空演化特性.
关键词:
跟驰模型
列车运行
优化控制
|
|
Abstract: Optimal control of train movement is an important way to reduce transport cost, enhance service level, and realize sustainable development. In this paper, based on traditional optimal velocity car-following model, an improved simulation model is presented, it is used to optimize the velocity control of train movement in urban railway system. The proposed model is established by introducing a new function of objective optimal velocity into the classical optimal velocity model (See Phys. Rev. E 51, 1035, Bando et al, 1995) to realize the optimal control of train movement in complicated conditions. Numerical simulation takes the Beijing City Metro Yi Zhuang line as an example. Here some reality measurement data is used. Results show that the proposed model can well describe the dynamic characteristics of train movement under the complex limited condition. Simulation results are close to reality measurement data. This demonstrates that the proposed model is valid. Further, by analyzing the space-time graph, the change of train velocity and travel time, the evolution characters of train flow under complex conditions are discussed.
Keywords:
car-following model
train movement
optimal control
|
收稿日期: 2013-12-06
|
|
基金: 中央高校基本科研业务费专项资金(批准号:2014JBM109)资助的课题. |
References
[1] | Adinolfi A, Lamedica R, Modesto C 1998 IEEE Transactions on Power Delivery 13 1536
|
[2] | Kokotovic P, Singh G 1972 IEEE Transactions on Automatic Control 17 92
|
[3] | Hwang H S 1998 IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans 28 791
|
[4] | Duarte M A, Sotomayor P X 1999 Optimal Control Applications and Methods 20 283
|
[5] | Howlett P 1996 Automation 3 519
|
[6] | Liu R Golovitcher I M 2003 Transportation Research Part A: Policy and Practice 37 917
|
[7] | Howlett P G 2000 Annals of Operation Research 98 1257
|
[8] | Li K P, Gao Z Y, Mao B H 2007 Chin. Phys. B 16 359
|
[9] | Chang C S, Sim S S 1997 Proceedings-Electric Power Applications 144 65
|
[10] | Cheng J X, Howlett P G 1993 IEEE Transactions Automatic Control 38 1730
|
[11] | Pipes L A 1953 J. Appl. Phys 24 274
|
[12] | Chandler R E, Herman R, Montroll E W 1958 Operational Research 6 165
|
[13] | Newell G F in 1961 Operational Research 9 209
|
[14] | Bando M, Hasebe K, Nakayama A 1995 Phys. Rev. E 51 1035
|
[15] | Helbing D, Tilch B 1998 Phys. Rev. E 58 133
|
[16] | Treiber M, Hennecke A, Helbing D 2000 Phys. Rev. E 62 1805
|
[17] | Tomer E, Safonov L, Havlin S 2000 Phys. Rev. Lett. 84 382
|
[18] | Tang T Q, Huang H J, Shang H Y 2010 Acta Phys. Sin. 59 6003 (in Chinese)[唐铁桥, 黄海军, 尚华艳2010 物理学报59 6003]
|
[19] | Yuan N, Hua C C 2012 Acta Phys. Sin. 61 160509 (in Chinese)[袁娜, 化存才2012 物理学报61 160509]
|
[20] | Su S, Li X, Tang T, Gao Z Y 2013 IEEE transaction on intelligent transportation system 14 883
|
[1]
|
曾友志, 张宁, 刘利娟. 考虑司机扰动风险偏好异质的跟驰模型[J]. 物理学报, 2014, 63(6): 068901.
|
[2]
|
葛红霞, 崔煜, 程荣军. 考虑前后车效应的反馈控制跟驰模型[J]. 物理学报, 2014, 63(11): 110504.
|
[3]
|
孙棣华, 周桐, 刘卫宁, 郑林江. 考虑最邻近前车综合信息的反馈控制跟驰模型[J]. 物理学报, 2013, 62(17): 170503.
|
[4]
|
周漩, 杨帆, 张凤鸣, 周卫平, 邹伟. 复杂网络系统拓扑连接优化控制方法[J]. 物理学报, 2013, 62(15): 150201.
|
[5]
|
何兆成, 孙文博. 考虑横向分离与超车期望的车辆跟驰模型[J]. 物理学报, 2013, 62(10): 108901.
|
[6]
|
张立东,贾磊,朱文兴. 弯道交通流跟驰建模与稳定性分析[J]. 物理学报, 2012, 61(7): 074501.
|
[7]
|
袁娜, 化存才. 多前车速度差的车辆跟驰模型的稳定性与孤波[J]. 物理学报, 2012, 61(16): 160509.
|
[8]
|
葛红霞, 程荣军, 李志鹏. 考虑双速度差效应的耦合映射跟驰模型[J]. 物理学报, 2011, 60(8): 080508.
|
[9]
|
赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究[J]. 物理学报, 2009, 58(2): 1332-1337.
|
[10]
|
彭光含, 孙棣华, 何恒攀. 交通流双车跟驰模型与数值仿真[J]. 物理学报, 2008, 57(12): 7541-7546.
|
[11]
|
韩祥临, 姜长元, 葛红霞, 戴世强. 基于智能交通系统的耦合映射跟驰模型和交通拥堵控制[J]. 物理学报, 2007, 56(8): 4383-4392.
|
[12]
|
李 宏, 张永强, 程 杰, 王鹿霞, 刘德胜. 飞秒激光控制的分子量子动力学研究:(Ⅰ)三维二能级系统[J]. 物理学报, 2007, 56(5): 3010-3016.
|
[13]
|
陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究[J]. 物理学报, 2007, 56(4): 2024-2029.
|
[14]
|
薛 郁. 随机计及相对速度的交通流跟驰模型[J]. 物理学报, 2003, 52(11): 2750-2756.
|
[15]
|
曾友志 张宁 刘利娟. 考虑司机扰动风险偏好异质的跟驰模型[J]. 物理学报, , (): 00.
|
|
|
|