搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层二硫化钼纳米带弛豫性能的分子动力学研究

王卫东 李龙龙 杨晨光 李明林

引用本文:
Citation:

单层二硫化钼纳米带弛豫性能的分子动力学研究

王卫东, 李龙龙, 杨晨光, 李明林

Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons

Wang Wei-Dong, Li Long-Long, Yang Chen-Guang, Li Ming-Lin
PDF
导出引用
  • 采用分子动力学方法,基于REBO势函数研究了不同长宽比的单层二硫化钼纳米带在不同热力学温度(0.01-1600 K)条件下的弛豫性能. 对弛豫过程中纳米带的能量变化和表面起伏程度进行了分析对比,研究了单层二硫化钼纳米带自由弛豫的动态平衡过程. 仿真结果显示:理想温度(0.01 K)条件下,分子动能较低,振动振幅较小,并不足以使纳米带产生起伏现象;但在室温或高温条件下时,纳米带的边缘及内部均会出现一定程度的起伏;随着体系温度的升高以及纳米带长宽比的增加,起伏程度也会增大. 最后,讨论了不同热力学温度条件下,手性对纳米带驰豫性能的影响. 研究结果表明,不同于扶手椅型纳米带,锯齿型纳米带不仅会出现垂直于纳米带表面的起伏和弯曲,同时还会在纳米带面内出现明显的沿着宽度方向的弯曲现象.
    In order to study the essential structural characteristics of monolayer MoS2 nanoribbons in natural state, and also the effects of the aspect ratio and the ambient temperature on the relaxation properties of the nanoribbons, the relaxation properties of monolayer MoS2 nanoribbons with different aspect ratios are simulated by molecular dynamics (MD) method based on REBO potential functions at different thermodynamic temperatures from 0.01 K to 1500 K. The energy curves and surface morphologies of monolayer MoS2 nanoribbon are obtained, and the dynamic equilibrium process of the monolayer MoS2 nanoribbons is also discussed in all the simulation process. The simulation results show that the monolayer MoS2 nanoribbons do not generate a fluctuation at the ideal temperature (0.01 K) for the reason that the kinetic energy of the monolayer MoS2 nanoribbons is almost zero and the vibration amplitude is small. However, a certain degree of fluctuations occurs at the edges and inside of the monolayer MoS2 nanoribbons at the room temperature or high temperature. The fluctuation height and the fluctuation degree also increase with increasing the ambient temperature and the aspect ratio of the MoS2 nanoribbon, even a high aspect ratio monolayer MoS2 nanoribbon exhibits a surface curved fluctuation, which is perpendicular to the surface of the MoS2 nanoribbons under high temperature condition. Finally, the influences of chirality on relaxation property under different temperature conditions are studied in this paper further, the results show that unlike the armchair structure, the zigzag monolayer MoS2 nanoribbons not only present a surface fluctuation, but also exhibit an obvious bending phenomenon along the width direction simultaneously. Like the armchair nanoribbons, the surface fluctuation height and the surface fluctuation degree of the zigzag nanoribbons also increase with increasing both the ambient temperature and the aspect ratio of the MoS2 nanoribbons. It is also observed that the armchair and zigzag monolayer MoS2 nanoribbons with a similar aspect ratio have a similar surface fluctuation degree at the same ambient temperature. Unlike the armchair nanoribbons, the bending phenomenon along the width direction of the zigzag nanoribbons is more significant, and the bending width and the bending degree increase with increasing the ambient temperature and the aspect ratio of the MoS2 nanoribbons. Although the bending degree of the zigzag nanoribbons becomes larger with the increase of temperature, the increasing rate of the bending degree will become smaller and smaller until the bending degree reaches a maximum value.
      Corresponding author: Wang Wei-Dong, wangwd@mail.xidian.edu.cn;liminglin@fzu.edu.cn ; Li Ming-Lin, wangwd@mail.xidian.edu.cn;liminglin@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51205302, 50903017).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A 2004 Science 306 666

    [2]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [3]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Ji J 2014 Nano Lett. 14 5097

    [4]

    Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Shvets I V 2011 Science 331 568

    [5]

    Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Lin Z 2015 ACS Nano 9 11658

    [6]

    Yuan M W 2013 Semicond. Technol. 38 212 (in Chinese) [袁明文 2013 半导体技术 38 212]

    [7]

    Lei T M, Wu S B, Zhang Y M, Liu J J, Guo H, Zhang Z Y 2013 Rare Metal Mat. Eng. 42 2477 (in Chinese) [雷天民, 吴胜宝, 张玉明, 刘佳佳, 郭辉, 张志勇 2013 稀有金属材料与工程 42 2477]

    [8]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [9]

    Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Guo W 2016 Nanoscale 8 2234

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 6805

    [11]

    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R, Tenne R 1997 Nature 387 791

    [12]

    Chen J, Kuriyama N, Yuan H, Takeshita H T, Sakai T 2001 J. Am. Chem. Soc. 123 11813

    [13]

    Dominko R, Arčon D, Mrzel A, Zorko A, Cevc P, Venturini P, Mihailovic D 2002 Adv. Mater. 14 1531

    [14]

    Bao W, Borys N J, Ko C, Suh J, Fan W, Thron A, Ashby P D 2015 Nat. Commun. 6 7993

    [15]

    Velusamy D B, Kim R H, Cha S, Huh J, Khazaeinezhad R, Kassani S H, Lee J 2015 Nat. Commun. 6 8063

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [17]

    Liu X, Zhang G., Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113

    [18]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [19]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [20]

    Mermin N D 1968 Phys. Rev. 176 250

    [21]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [22]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [23]

    Le Doussal P, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [24]

    Wang W, Yi C, Ji X, Niu X 2012 Nanosci. Nanotechnol. Lett. 4 1188

    [25]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [26]

    Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643

    [27]

    Chen Q, Cao H H, Hang H B 2004 J. Tianjin Univ. Technol. 20 101 (in Chinese) [陈强, 曹红红, 黄海波 2004 天津理工学院学报 20 101]

    [28]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110

    [29]

    Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mater. 14 783

    [31]

    Stewart J A, Spearot D E 2013 Model Simul. Mater. Sci. 21 045003

    [32]

    Dang K Q, Simpson J P, Spearot D E 2014 Scr. Mater. 76 41

    [33]

    Li A H 2010 J. Hunan Univ. Sci. Eng. 4 38 (in Chinese) [李爱华 2010 湖南科技学院学报 4 38]

    [34]

    Zhang Y 2014 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [张勇 2014 硕士学位论文 (长沙: 湖南师范大学)]

    [35]

    Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G 2014 Appl. Phys. Lett. 105 053111

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A 2004 Science 306 666

    [2]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [3]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Ji J 2014 Nano Lett. 14 5097

    [4]

    Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Shvets I V 2011 Science 331 568

    [5]

    Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Lin Z 2015 ACS Nano 9 11658

    [6]

    Yuan M W 2013 Semicond. Technol. 38 212 (in Chinese) [袁明文 2013 半导体技术 38 212]

    [7]

    Lei T M, Wu S B, Zhang Y M, Liu J J, Guo H, Zhang Z Y 2013 Rare Metal Mat. Eng. 42 2477 (in Chinese) [雷天民, 吴胜宝, 张玉明, 刘佳佳, 郭辉, 张志勇 2013 稀有金属材料与工程 42 2477]

    [8]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [9]

    Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Guo W 2016 Nanoscale 8 2234

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 6805

    [11]

    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R, Tenne R 1997 Nature 387 791

    [12]

    Chen J, Kuriyama N, Yuan H, Takeshita H T, Sakai T 2001 J. Am. Chem. Soc. 123 11813

    [13]

    Dominko R, Arčon D, Mrzel A, Zorko A, Cevc P, Venturini P, Mihailovic D 2002 Adv. Mater. 14 1531

    [14]

    Bao W, Borys N J, Ko C, Suh J, Fan W, Thron A, Ashby P D 2015 Nat. Commun. 6 7993

    [15]

    Velusamy D B, Kim R H, Cha S, Huh J, Khazaeinezhad R, Kassani S H, Lee J 2015 Nat. Commun. 6 8063

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [17]

    Liu X, Zhang G., Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113

    [18]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [19]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [20]

    Mermin N D 1968 Phys. Rev. 176 250

    [21]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [22]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [23]

    Le Doussal P, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [24]

    Wang W, Yi C, Ji X, Niu X 2012 Nanosci. Nanotechnol. Lett. 4 1188

    [25]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [26]

    Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643

    [27]

    Chen Q, Cao H H, Hang H B 2004 J. Tianjin Univ. Technol. 20 101 (in Chinese) [陈强, 曹红红, 黄海波 2004 天津理工学院学报 20 101]

    [28]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110

    [29]

    Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mater. 14 783

    [31]

    Stewart J A, Spearot D E 2013 Model Simul. Mater. Sci. 21 045003

    [32]

    Dang K Q, Simpson J P, Spearot D E 2014 Scr. Mater. 76 41

    [33]

    Li A H 2010 J. Hunan Univ. Sci. Eng. 4 38 (in Chinese) [李爱华 2010 湖南科技学院学报 4 38]

    [34]

    Zhang Y 2014 M. S. Thesis (Changsha: Hunan Normal University) (in Chinese) [张勇 2014 硕士学位论文 (长沙: 湖南师范大学)]

    [35]

    Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G 2014 Appl. Phys. Lett. 105 053111

  • [1] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [2] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [3] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [4] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [5] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [6] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [7] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [13] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [14] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [15] 沈红霞, 吴国祯, 王培杰. 手性分子2, 3-丁二醇的旋光拉曼光谱研究. 物理学报, 2013, 62(5): 053301. doi: 10.7498/aps.62.053301
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [18] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
计量
  • 文章访问数:  7900
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-06-05
  • 刊出日期:  2016-08-05

/

返回文章
返回