Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic

Li Kun Fang Shi-Liang An Liang

Citation:

Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic

Li Kun, Fang Shi-Liang, An Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method of range and depth estimation was studied using a single hydrophone based on the dispersive characteristic and time-frequency analysis for low frequency underwater acoustic pulse signals in shallow water environment. First, the signal received on a single hydrophone can be decomposed into a series of modes within the frame work of normal mode theory, and then the dispersive characteristic of the propagating modes can be analyzed using the time-frequency analysis. In order to improve the time-frequency resolution, the use of the time-frequency distribution with adaptive radial-Gaussian kernel extracts the arrival time difference of propagating modes in dispersion curve, which can be used to estimate source range. Mode energy can be extracted using binary time-frequency mask filtering based on multi-mode joint matching processing; and the source depth can be estimated by comparing the differences of the mode energy of the real data and simulated replica data, yielding a contrast function. Simulation results from a shallow-water Pekeris waveguide show that the time-frequency distribution with adaptive radial-Gaussian kernel represents well the dispersion characteristics of the underwater acoustic pulse signals, provides higher time-frequency resolution and overcomes the problem of the inherent limit for the time resolution and frequency resolution in the traditional short-time Fourier transform, so that the modes can be separated and identified more easily in the time-frequency plane. From the result of the range estimation, the different mode combinations have different results of the range estimation. The range estimation result can be obtained accurately by using the mode with high energy in the time-frequency plane. The relative error in range estimation is less than 2% by using the mode with high energy. In terms of the depth estimation, the more the number of joint matching mode, the more sharp peak and low fake peaks the contrast function has, so that the depth estimation is further improved by incorporating more modes. This research has great significance for studying the extraction and separation of low frequency underwater acoustic pulse signals.
    • Funds: Project supported by the National Key Basic Research Program of China (Grant No. 6131222), and the National Natural Science Foundation of China (Grant Nos. 11104029, 11104141).
    [1]

    Porter M B, Tolstoy A 1994 J. Acoust. Soc. Am. 2 161

    [2]

    Xu W, Xiao Z, Yu L 2011 IEEE J. Ocean. Eng. 36 273

    [3]

    Wu K M, Ling Q, Wu L X 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, September14-16, 2011 p1

    [4]

    Wang Q, Jiang Q 2010 EURASIP J. Advances. Signal Processing. 483524 1

    [5]

    Frazer L N, Pecholcs P I 1990 J. Acoust. Soc. Am. 88 995

    [6]

    Lee Y P 1998 IEEE Oceans'98 Conference Proceedings Nice, September 28-October 1 1998 p1074

    [7]

    Jesus S M, Porter M B, Y Stéphan, Démoulin X, Rodriguez O C, Ferreira Coelho E M M 2000 IEEE J. Ocean. Eng. 25 337

    [8]

    Touzé G L, Torras J, Nicolas B, Mars J 2008 IEEE Oceans, Quebec City, September 15-18, 2008 p1

    [9]

    Jemmott C W, Culver R L, Bose N K 2008 IEEE Conference on Signal, Systems and Computers, Pacific Grove, October 26-29, 2008 p283

    [10]

    Tao H L, Hickman G, Krolik J L, Kemp M 2007 IEEE Oceans Aberdeen, June 18-21, 2007 p1

    [11]

    Gac L J C, Asch Mark, Stéphan Y, Demoulin X 2003 IEEE J. Ocean. Eng. 28 479

    [12]

    Tiemann C O, Thode A M, Straley J, O'Connell Victoria, Folkert K 2006J. Acoust. Soc. Am. 120 2355

    [13]

    Chen C S, Miller J H, Boudreaux G F, Potty G R, Lazauski C J 2003 IEEE Oceans 2003. proceedings, San Diego, September 22-26, 2003 p2903

    [14]

    Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE Europe Oceans Brest, June 20-23, 2005 p725

    [15]

    Ioana C, Jarrot A, Gervaise C, Stéphan Y, Quinquis A 2010 IEEE Trans. Signal Processing. 58 4093

    [16]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics) p337

    [17]

    Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 IEEE Oceans' 2009 Biloxi, October 26-29, 2009 p1

    [18]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [19]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [20]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP J. Advances. Signal Processing. 304103 1

    [21]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [22]

    Baraniuk R G, Jones D L 1993 Signal Processing 32 263

    [23]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [24]

    Zhang D M, Li Z L, Zhang R H 2005 Acta Acoustica 30 415 (in Chinese) [张德明, 李整林, 张仁和 2005 声学学报 30 415]

    [25]

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 30 54]

    [26]

    Nicolas B, Mars J I, Lacoume J L 2006 EURASIP J. Applied Signal Processing 65901 1

    [27]

    Rein van den B, Richard van B 1992 Computer Vision, Graphics, And Image Processing: Graphical Models And Image Processing 54 252

  • [1]

    Porter M B, Tolstoy A 1994 J. Acoust. Soc. Am. 2 161

    [2]

    Xu W, Xiao Z, Yu L 2011 IEEE J. Ocean. Eng. 36 273

    [3]

    Wu K M, Ling Q, Wu L X 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, September14-16, 2011 p1

    [4]

    Wang Q, Jiang Q 2010 EURASIP J. Advances. Signal Processing. 483524 1

    [5]

    Frazer L N, Pecholcs P I 1990 J. Acoust. Soc. Am. 88 995

    [6]

    Lee Y P 1998 IEEE Oceans'98 Conference Proceedings Nice, September 28-October 1 1998 p1074

    [7]

    Jesus S M, Porter M B, Y Stéphan, Démoulin X, Rodriguez O C, Ferreira Coelho E M M 2000 IEEE J. Ocean. Eng. 25 337

    [8]

    Touzé G L, Torras J, Nicolas B, Mars J 2008 IEEE Oceans, Quebec City, September 15-18, 2008 p1

    [9]

    Jemmott C W, Culver R L, Bose N K 2008 IEEE Conference on Signal, Systems and Computers, Pacific Grove, October 26-29, 2008 p283

    [10]

    Tao H L, Hickman G, Krolik J L, Kemp M 2007 IEEE Oceans Aberdeen, June 18-21, 2007 p1

    [11]

    Gac L J C, Asch Mark, Stéphan Y, Demoulin X 2003 IEEE J. Ocean. Eng. 28 479

    [12]

    Tiemann C O, Thode A M, Straley J, O'Connell Victoria, Folkert K 2006J. Acoust. Soc. Am. 120 2355

    [13]

    Chen C S, Miller J H, Boudreaux G F, Potty G R, Lazauski C J 2003 IEEE Oceans 2003. proceedings, San Diego, September 22-26, 2003 p2903

    [14]

    Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE Europe Oceans Brest, June 20-23, 2005 p725

    [15]

    Ioana C, Jarrot A, Gervaise C, Stéphan Y, Quinquis A 2010 IEEE Trans. Signal Processing. 58 4093

    [16]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics) p337

    [17]

    Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 IEEE Oceans' 2009 Biloxi, October 26-29, 2009 p1

    [18]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [19]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [20]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP J. Advances. Signal Processing. 304103 1

    [21]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [22]

    Baraniuk R G, Jones D L 1993 Signal Processing 32 263

    [23]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [24]

    Zhang D M, Li Z L, Zhang R H 2005 Acta Acoustica 30 415 (in Chinese) [张德明, 李整林, 张仁和 2005 声学学报 30 415]

    [25]

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 30 54]

    [26]

    Nicolas B, Mars J I, Lacoume J L 2006 EURASIP J. Applied Signal Processing 65901 1

    [27]

    Rein van den B, Richard van B 1992 Computer Vision, Graphics, And Image Processing: Graphical Models And Image Processing 54 252

  • [1] Yin Bi-Huan, He Zi, Ding Da-Zhi. Rotating speed estimation of spinning objects based on rotational Doppler effect. Acta Physica Sinica, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [2] Lin Dan-Ying, Wu Ze-Kai, Yu Bin, Huang Li-Lin, Zhang Xiao, Qu Jun-Le. Numerical simulation study of three-dimensional high-density single molecule localization microscopy based on orthogonal astigmatism. Acta Physica Sinica, 2022, 71(12): 128701. doi: 10.7498/aps.71.20212091
    [3] Luo Yong, Yang Dang-Guo, Wu Cong-Hai, Li Hu, Zhang Shu-Hai, Wu Jun-Qiang. Waves model of three-dimensional cavity flow and its oscillation mode evolution. Acta Physica Sinica, 2022, 71(19): 194301. doi: 10.7498/aps.71.20220922
    [4] Luo Xiao-Jun, Shi Li-Hua, Zhang Qi, Qiu Shi, Li Yun, Liu Yi-Cheng, Duan Yan-Tao. Analysis of optical radiation dispersion characteristics of an artificially triggered lightning return stroke process. Acta Physica Sinica, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [5] Theoretical analysis and algorithm Design of Optimized pilot for downlink channel estimation in massive MIMO systems based on compressed sensing. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211504
    [6] Li Xiao-Man, Piao Sheng-Chun, Zhang Ming-Hui, Liu Ya-Qin, Zhou Jian-Bo. A passive range method of underwater source based on single hydrophone. Acta Physica Sinica, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [7] Yang Yang, Li Xiu-Kun. Blind source extraction based on time-frequency characteristics for underwater object acoustic scattering. Acta Physica Sinica, 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [8] Zhu Liang-Ming, Li Feng-Hua, Sun Mei, Chen De-Sheng. Source ranging based on frequency band decomposition and distance weighting using a single acoustic vector sensor in shallow water. Acta Physica Sinica, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [9] Lu Li-Cheng, Ma Li. Analysis of waveguide time-frequency based on Warping transform. Acta Physica Sinica, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [10] Zhang Tong-Wei, Yang Kun-De, Ma Yuan-Liang, Wang Yong. A robust localization method for source localization based on the auto-correlation function of wide-band signal. Acta Physica Sinica, 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [11] Lü Jun-Wei, Chi Cheng, Yu Zhen-Tao, Bi Bo, Song Qing-Shan. Research on the asphericity error elimination of the invariant of magnetic gradient tensor. Acta Physica Sinica, 2015, 64(19): 190701. doi: 10.7498/aps.64.190701
    [12] Xu Ling-Ji, Yang Yi-Xin, Yang Long. Beamspace time-frequency analysis for identification of underwater tone noise sources. Acta Physica Sinica, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [13] Liu Ya-Qi, Liu Cheng-Cheng, Zhao Yong-Jun, Zhu Jian-Dong. A blind beamforming algorithm for multitarget signals based on time-frequency analysis. Acta Physica Sinica, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [14] Wang Yan, Zou Nan, Fu Jin, Liang Guo-Long. Estimation of single hydrophone target motion parameter based on cepstrum analysis. Acta Physica Sinica, 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [15] Feng Ju, Liao Cheng, Zhang Qing-Hong, Sheng Nan, Zhou Hai-Jing. A time reversal parabolic equation based localization method in evaporation duct. Acta Physica Sinica, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [16] Zhao Long, Yan Ting-Jun. Positioning performance evaluation of magnetic contour matching under different accuracy of sensor. Acta Physica Sinica, 2013, 62(6): 067702. doi: 10.7498/aps.62.067702
    [17] Li Fu-Cai, Meng Guang. Dispersion analysis of Lamb waves with narrow frequency bands. Acta Physica Sinica, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [18] Cheng Gui-Ping, Zheng Jun, Deng Wen-Wu, Li Gao-Xiang. Localization of the relative positions of two atoms in the presence of optical feedback. Acta Physica Sinica, 2008, 57(1): 212-218. doi: 10.7498/aps.57.212
    [19] Sun Qi-Zhen, Liu De-Ming, Wang Jian. A novel ring structure-based distributed optical fiber vibration sensing system. Acta Physica Sinica, 2007, 56(10): 5903-5908. doi: 10.7498/aps.56.5903
    [20] Deng Yu-Qiang, Wang Qing-Yue, Zhang Zhi-Gang. Time-frequency analysis for phase retrieval from traces of frequency resolved optical gating. Acta Physica Sinica, 2006, 55(12): 6454-6458. doi: 10.7498/aps.55.6454
Metrics
  • Abstract views:  5452
  • PDF Downloads:  490
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2012
  • Accepted Date:  09 January 2013
  • Published Online:  05 May 2013

/

返回文章
返回