|
|
Quantum manipulation of electronic phase separation in complex oxides |
Wang Wen-Bin1, Zhu Yin-Yan2, Yin Li-Feng2,3, Shen Jian1,2,3 |
1. Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China; 2. State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China; 3. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract Complex oxides system displays exotic properties such as high temperature superconductivity, colossal magnetoresistance and multiferroics. Owing to the strong correlation between lattice, spin, charge and orbital degrees of freedom, competing electronic states in complex oxides system often have close energy scales leading to rich phase diagrams and spatial coexistence of different electronic phases known as electronic phase separation (EPS). When the dimension of complex oxides system is reduced to the length scale of the correlation length of the EPS, one would expect fundamental changes of the correlated behavior. This offers a way to control the physical properties in the EPS system. In this paper, we review our recent works on electronic phase separation in complex oxide systems. We discovered a pronounced ferromagnetic edge state in manganite strips; by using lithographic techniques, we also fabricated antidot arrays in manganite, which show strongly enhanced metal-insulator transition temperature and reduced resistance. Moreover, we discovered a spatial confinement-induced transition from an EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases to a single ferromagnetic metallic state in manganite. In addition, by using unit cell by unit cell superlattice growth technique, we determined the role of chemical ordering of the dopant in manganite. We show that spatial distribution of the chemical dopants has strong influence on their EPS and physical properties. These works open a new way to manipulate EPS and thus the global physical properties of the complex oxides systems, which is potentially useful for oxides electronic and spintronic device applications.
|
Received: 12 November 2018
|
PACS: |
75.47.Gk
|
(Colossal magnetoresistance)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Fund:Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300702), the National Basic Research Program of China (Grant No. 2014CB921104), the National Natural Science Foundation of China (Grant No. 11504053), the Program of Shanghai Academic Research Leader, China (Grant Nos. 18XD1400600, 17XD1400400), and Shanghai Municipal Natural Science Foundation, China (Grant Nos. 18JC1411400, 18ZR1403200). |
Corresponding Authors:
沈健
E-mail: shenj5494@fudan.edu.cn
|
|
|
|
[1] |
Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81
|
[2] |
Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709
|
[3] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
|
[4] |
Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
|
[5] |
Dagotto E, Hotta T, Moreo A 2001 Physics Reports 344 1
|
[6] |
Tokura Y 2006 Rep. Prog. Phys. 69 797
|
[7] |
Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034
|
[8] |
E D 2003 Springer, Heidelberg pp 313
|
[9] |
Liang L Z, Li L, Wu H, Zhu X H 2014 Nanoscale Research Letters 9 1
|
[10] |
Dulli H, Dowben P A, Liou S H, Plummer E W 2000 Phys. Rev. B 62 14629
|
[11] |
Nascimento V B, Freeland J W, Saniz R, Moore R G, Mazur D, Liu H, Pan M H, RunÅgren J, Gray K E, Rosenberg R A, Zheng H, Mitchell J F, Freeman A J, Veltruska K, Plummer E W 2009 Phys. Rev. Lett. 103 227201
|
[12] |
Freeland J W, Gray K E, Ozyuzer L, Berghuis P, Badica E, Kavich J, Zheng H, Mitchell J F 2005 Nat. Mater. 4 62
|
[13] |
Podzorov V, Kim B G, Kiryukhin V, Gershenson M E, Cheong S W 2001 Phys. Rev. B 64 140406
|
[14] |
Bingham N S, Lampen P, Phan M H, Hoang T D, Chinh H D, Zhang C L, Cheong S W, Srikanth H 2012 Phys. Rev. B 86 064420
|
[15] |
Uehara M, Mori S, Chen C H, Cheong S W 1999 Nature 399 560
|
[16] |
Du K, Zhang K, Dong S, Wei W G, Shao J, Niu J B, Chen J J, Zhu Y Y, Lin H X, Yin X L, Liou S H, Yin L F, Shen J 2015 Nat. Commun. 6 6179
|
[17] |
Zhang L W, Israel C, Biswas A, Greene R L, de Lozanne A 2002 Science 298 805
|
[18] |
Soh Y A, Aeppli G, Mathur N D, Blamire M G 2000 Phys. Rev.B 63 020402
|
[19] |
Soh Y A, Evans P G, Cai Z, Lai B, Kim C Y, Aeppli G, Mathur N D, Blamire M G, Isaacs E D 2002 J. Appl. Phys. 91 7742
|
[20] |
Gillaspie D, Ma J X, Zhai H Y, Ward T Z, Christen H M, Plummer E W, Shen J 2006 J. Appl. Phys. 99 08S901
|
[21] |
Wollan E O, Koehler W C 1955 Phys. Rev. 100 545
|
[22] |
Taran S, Chaudhuri B K, Das A, Nigam A K, Kremer R K, Chatterjee S 2007 Journal of Physics-Condensed Matter 19 216217
|
[23] |
Ma J X, Gillaspie D T, Plummer E W, Shen J 2005 Phys. Rev. Lett. 95 237210
|
[24] |
Martin J I, Nogues J, Liu K, Vicent J L, Schuller I K 2003 Journal of Magnetism and Magnetic Materials 256 449
|
[25] |
Li H, Li L, Liang H X, Cheng L, Zhai X F, Zeng C G 2014 Appl. Phys. Lett. 104 082414
|
[26] |
Kovylina M, Erekhinsky M, Morales R, Villegas J E, Schuller I K, Labarta A, Batlle X 2009 Appl. Phys. Lett. 95 152507
|
[27] |
Frankovsky R, Luetkens H, Tambornino F, Marchuk A, Pascua G, Amato A, Klauss H H, Johrendt D 2013 Phys. Rev. B 87 174515
|
[28] |
Salamon M B, Jaime M 2001 Reviews of Modern Physics 73 583
|
[29] |
Zhang K, Du K, Liu H, Zhang X G, Lan F L, Lin H X, Wei W G, Zhu Y Y, Kou Y F, Shao J, Niu J B, Wang W B, Wu R Q, Yin L F, Plummer E W, Shen J 2015 Proceedings of the National Academy of Sciences of the United States of America 112 9558
|
[30] |
Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103
|
[31] |
Mahendiran R, Maignan A, Hebert S, Martin C, Hervieu M, Raveau B, Mitchell J F, Schiffer P 2002 Phys. Rev. Lett. 89 286602
|
[32] |
Burgy J, Moreo A, Dagotto E 2004 Phys. Rev. Lett. 92 097202
|
[33] |
Ahn K H, Lookman T, Bishop A R 2004 Nature 428 401
|
[34] |
Schmalian J, Wolynes P G 2000 Phys. Rev. Lett. 85 836
|
[35] |
Demko L, Kezsmarki I, Mihaly G, Takeshita N, Tomioka Y, Tokura Y 2008 Phys. Rev. Lett. 101 037206
|
[36] |
Ghivelder L, Parisi F 2005 Phys. Rev. B 71 184425
|
[37] |
Shao J, Liu H, Zhang K, Yu Y, Yu W C, Lin H X, Niu J B, Du K, Kou Y F, Wei W G, Lan F L, Zhu Y Y, Wang W B, Xiao J, Yin L F, Plummer E W, Shen J 2016 Proceedings of the National Academy of Sciences of the United States of America 113 9228
|
[38] |
Ward T Z, Gai Z, Guo H W, Yin L F, Shen J 2011 Phys. Rev. B 83 125125
|
[39] |
Fath M, Freisem S, Menovsky A A, Tomioka Y, Aarts J, Mydosh J A 1999 Science 285 1540
|
[40] |
Moshnyaga V, Sudheendra L, Lebedev O I, Koster S A, Gehrke K, Shapoval O, Belenchuk A, Damaschke B, van Tendeloo G, Samwer K 2006 Phys. Rev. Lett. 97 107205
|
[41] |
RodriguezMartinez L M, Attfield J P 1996 Phys. Rev. B 54 15622
|
[42] |
Moreo A, Mayr M, Feiguin A, Yunoki S, Dagotto E 2000 Phys. Rev. Lett. 84 5568
|
[43] |
Gibert M, Zubko P, Scherwitzl R, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195
|
[44] |
Rogdakis K, Viskadourakis Z, Petrovic A P, Choi E, Lee J, Panagopoulos C 2015 Appl. Phys. Lett. 106 023120
|
[45] |
May S J, Ryan P J, Robertson J L, Kim J W, Santos T S, Karapetrova E, Zarestky J L, Zhai X, te Velthuis S G E, Eckstein J N, Bader S D, Bhattacharya A 2009 Nat. Mater. 8 892
|
[46] |
Zhu Y Y, Du K, Niu J B, Lin L F, Wei W G, Liu H, Lin H X, Zhang K, Yang T Y, Kou Y F, Shao J, Gao X Y, Xu X S, Wu X S, Dong S, Yin L F, Shen J 2016 Nat. Commun. 7 11260
|
[47] |
Zhai H Y, Ma J X, Gillaspie D T, Zhang X G, Ward T Z, Plummer E W, Shen J 2006 Phys. Rev. Lett. 97 167201
|
[48] |
Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W, Shen J 2008 Phys. Rev. Lett. 100 247204
|
[49] |
Bouzerar G, Cepas O 2007 Phys. Rev. B 76 020401
|
[50] |
Dong S, Yu R, Yunoki S, Alvarez G, Liu J M, Dagotto E 2008 Phys. Rev. B 78 201102
|
[1] |
Zhang Si-Qi, Lu Jing-Bin, Liu Xiao-Jing, Liu Ji-Ping, Li Hong, Liang Yu, Zhang Xiao-Ru, Liu Han, Wu Xiang-Yao, Guo Yi-Qing. Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model[J]. Acta Physica Sinica, 2018, 67(9):
.
doi:10.7498/aps.67.20172050. |
[2] |
Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions[J]. Acta Physica Sinica, 2018, 67(13):
.
doi:10.7498/aps.67.20180235. |
[3] |
Yang Zeng-Qiang, Zhang Li-Da. Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse[J]. Acta Physica Sinica, 2015, 64(13):
.
doi:10.7498/aps.64.133203. |
[4] |
LUO Si-Zuo,LIU Fu-Chun,DING Da-Jun. From random to oriented——ultrafast control of molecular rotation dynamics[J]. Physics, 2015, 44(1):
.
doi:10.7693/wl20150102. |
|
|
|
|