引用本文: |
Citation: |
计量
- 文章访问数: 3139
- PDF下载量: 848
- 被引次数: 0
引用本文: |
Citation: |
摘要: 利用我们提出的三维量子自旋玻璃理论,通过引入一个量子的Goldbart去耦方案,将三维量子自旋玻璃的稳定性Hessian矩阵的本征值问题转化为类伊辛自旋玻璃的相应问题,并求出了所有的本征值。通过分析最小本征值,获得了Almeida-Thouless(AT)下临界线和Gabay-Toulouse(GT)上临界线所满足的方程。最后,数值研究了不同自旋的AT不稳定性并讨论了我们的理论与热场动力学方法、集团展开方法的联系。
Abstract: Based on our previous work, introducing an extended Goldbart ansatz, all eigenvalues of the Hessian matrix in our three-dimensional spin glass model are obtained. It is found that the vanishing smallest eigenvalue λ3 has two solutions, which correspond to the Gabay-Toulouse (GT) upper and Almeida-Thouless (AT) lower critical lines respectively. Finally, the relation between our theory and other method is discussed.