搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二级6—8型大腔体装置的高压发生效率机理研究

王文丹 贺端威 王海阔 王福龙 董海妮 陈海花 李子扬 张剑 王善民 寇自力 彭放

二级6—8型大腔体装置的高压发生效率机理研究

王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放
PDF
导出引用
导出核心图
  • 利用自行设计与集成的二级6—8型大腔体静高压装置,研究了影响八面体压腔高压发生效率的主要因素及机理,并提出了一种八面体压腔密封的简化力学模型.针对于10/4(八面体传压介质边长为10 mm,二级WC立方体增压块截角边长为4 mm)组装的实验结果发现:预密封边尺寸会显著影响八面体压腔的压力产生效率;在腔体压力为12 GPa左右时,高压发生效率随八面体MgO传压介质初始密度的增加而提高;在15 GPa以上时,影响压力产生效率的主要因素是WC增压立方块本身的强度以及加压过程中所形成密封边的尺寸及材料.
    • 基金项目: 广西科学研究与技术开发计划项目(批准号:桂科攻0992002-15)及国家自然科学基金(批准号:10772126)资助的课题.
    [1]

    [1]Sung C M 1997 High Temp.-High Pressure 29 253

    [2]

    [2]Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075

    [3]

    [3]Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526

    [4]

    [4]Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [5]

    [5]Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [6]

    [6]Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT – 43th EHPRG Karlsruhe/Germany,June 27 – July 1,2005

    [7]

    [7]Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [8]

    [8]Khvostantsev L G 1984 High Temp.-High Pressure 16 165

    [9]

    [9]Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Elsevier B. V. ) p461

    [10]

    ]Kawai N, Endo S 1970 Rev. Sci. Instrum 41 1178

    [11]

    ]Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum.74 3002

    [12]

    ]Tomoo K, Ken-ichi F, Atsushi K, Norimasa N, Yoshinori T, Sueda Y, Tomoaki K, Wataru U 2004 Phys. Earth Planet. Int. 143 497

    [13]

    ]Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [14]

    ]Cordier P, Rubie D C 2001 Mater. Sci. Engineering A 38 309

    [15]

    ]Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth Planet. Int. 143 507

    [16]

    ]Reza A, Henry Z, Luo J T, Su L, Hu Y, Yuan C S, Carter C 2005 Dia. Relat. Mater. 14 1916

    [17]

    ]Lü S J, Hong S M 2009 Acta Phys. Sin.58 6852(in Chinese) [吕世杰、罗建太、苏磊、胡云、袁朝圣、洪时明 2009 物理学报 58 6852]

    [18]

    ]Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245

    [19]

    ]Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 [王福龙、贺端威、房雷鸣、陈晓芳、李拥军、张伟、张剑、寇自力、彭放 2008 物理学报 57 5429]

    [20]

    ]Dunstan D J 1989 Rev. Sci. Instrum. 60 3789

    [21]

    ]He D W, Wang F L, Kou Z L, Peng F 2007 Chinese Patent10048839.2 [2009-05-13] (in Chinese) [贺端威、王福龙、寇自力 中国专利(专利号:ZL 2007 1 0048839.2)]

    [22]

    ]Getting I C 1998 Metrologia 35 119

    [23]

    ]Lloyd E C 1971 Accurate characterization of the high-pressure environment NBS Special Publication No. 326 (WashingtonDC ) p1

    [24]

    ]Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608

    [25]

    ]Onodera A, Ohtani A 1980 J. Appl. Phys. 51 2581

    [26]

    ]Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [27]

    ]Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [28]

    ]Meade C, Jeanloz R 1988 J. Geophys. Res. 93 3261

    [29]

    ]Edmond J M, Paterson M S 1971 Contr. Mineral and Petrol 30 141

    [30]

    ]Fontanari V, Bellin F, Visintainer M, Ischia G 2006 Exp. Mech. 46 313

  • [1]

    [1]Sung C M 1997 High Temp.-High Pressure 29 253

    [2]

    [2]Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075

    [3]

    [3]Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526

    [4]

    [4]Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [5]

    [5]Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [6]

    [6]Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT – 43th EHPRG Karlsruhe/Germany,June 27 – July 1,2005

    [7]

    [7]Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [8]

    [8]Khvostantsev L G 1984 High Temp.-High Pressure 16 165

    [9]

    [9]Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Elsevier B. V. ) p461

    [10]

    ]Kawai N, Endo S 1970 Rev. Sci. Instrum 41 1178

    [11]

    ]Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum.74 3002

    [12]

    ]Tomoo K, Ken-ichi F, Atsushi K, Norimasa N, Yoshinori T, Sueda Y, Tomoaki K, Wataru U 2004 Phys. Earth Planet. Int. 143 497

    [13]

    ]Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [14]

    ]Cordier P, Rubie D C 2001 Mater. Sci. Engineering A 38 309

    [15]

    ]Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth Planet. Int. 143 507

    [16]

    ]Reza A, Henry Z, Luo J T, Su L, Hu Y, Yuan C S, Carter C 2005 Dia. Relat. Mater. 14 1916

    [17]

    ]Lü S J, Hong S M 2009 Acta Phys. Sin.58 6852(in Chinese) [吕世杰、罗建太、苏磊、胡云、袁朝圣、洪时明 2009 物理学报 58 6852]

    [18]

    ]Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245

    [19]

    ]Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 [王福龙、贺端威、房雷鸣、陈晓芳、李拥军、张伟、张剑、寇自力、彭放 2008 物理学报 57 5429]

    [20]

    ]Dunstan D J 1989 Rev. Sci. Instrum. 60 3789

    [21]

    ]He D W, Wang F L, Kou Z L, Peng F 2007 Chinese Patent10048839.2 [2009-05-13] (in Chinese) [贺端威、王福龙、寇自力 中国专利(专利号:ZL 2007 1 0048839.2)]

    [22]

    ]Getting I C 1998 Metrologia 35 119

    [23]

    ]Lloyd E C 1971 Accurate characterization of the high-pressure environment NBS Special Publication No. 326 (WashingtonDC ) p1

    [24]

    ]Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608

    [25]

    ]Onodera A, Ohtani A 1980 J. Appl. Phys. 51 2581

    [26]

    ]Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [27]

    ]Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [28]

    ]Meade C, Jeanloz R 1988 J. Geophys. Res. 93 3261

    [29]

    ]Edmond J M, Paterson M S 1971 Contr. Mineral and Petrol 30 141

    [30]

    ]Fontanari V, Bellin F, Visintainer M, Ischia G 2006 Exp. Mech. 46 313

  • [1] 王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张 伟, 张 剑, 寇自力, 彭 放. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置. 物理学报, 2008, 57(9): 5429-5434. doi: 10.7498/aps.57.5429
    [2] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响. 物理学报, 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [3] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. JAERI 10 A 离子源体积产生效率数值优化. 物理学报, 2012, 61(18): 185205. doi: 10.7498/aps.61.185205
    [4] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究. 物理学报, 2012, 61(18): 185204. doi: 10.7498/aps.61.185204
    [5] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [6] 吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明. 滑块式六含八超高压实验装置及其压力温度标定. 物理学报, 2009, 58(10): 6852-6857. doi: 10.7498/aps.58.6852
    [7] 忻贤杰, 王淦昌. 压力使固体产生磷光. 物理学报, 1947, 10(1): 53-53. doi: 10.7498/aps.7.53
    [8] 张绍忠. 高压力下液体之比电容. 物理学报, 1934, 2(2): 1-55. doi: 10.7498/aps.1.1
    [9] 徐济安, 谢鸿森, 孙宗琦. 静态超高压大腔体中热流的计算机模拟(Ⅰ)——基本方程和数值求解方法. 物理学报, 1997, 46(10): 1938-1945. doi: 10.7498/aps.46.1938
    [10] 徐济安, 谢鸿森, 孙宗琦. 静态超高压大腔体中热流的计算机模拟(Ⅱ)计算结果与分析. 物理学报, 1998, 47(6): 938-944. doi: 10.7498/aps.47.938
    [11] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响. 物理学报, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [12] 解 研, 罗 莹, 刘绍军. 单向压力对碳纳米管(6, 6)晶体电子结构的影响. 物理学报, 2008, 57(7): 4364-4370. doi: 10.7498/aps.57.4364
    [13] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重. 体积产生负氢离子能量沉积及引出效率数值模拟研究. 物理学报, 2012, 61(23): 235201. doi: 10.7498/aps.61.235201
    [14] 何绍堂, 黄文忠, 孙永良, 杨尚金, 蔡玉琴, 何安, 孔令华, 淳于书泰. 激光加热Cu和NaF靶产生的1.2keV区X射线转换效率的测量. 物理学报, 1993, 42(8): 1252-1256. doi: 10.7498/aps.42.1252
    [15] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [16] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究. 物理学报, 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [17] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [19] 谢盘海. 计算高压下金属的熔化温度、Grüneisen系数及等温压力的新公式. 物理学报, 1983, 32(8): 1086-1092. doi: 10.7498/aps.32.1086
    [20] 沈中毅, 殷岫君, 张云, 何寿安, 洪景新. 高压力下非晶铁中局域结构和应力变化的计算机模拟. 物理学报, 1988, 37(2): 283-294. doi: 10.7498/aps.37.283
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3213
  • PDF下载量:  917
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-20
  • 修回日期:  2009-09-03
  • 刊出日期:  2010-05-15

二级6—8型大腔体装置的高压发生效率机理研究

  • 1. 四川大学原子与分子物理研究所,成都 610065
    基金项目: 

    广西科学研究与技术开发计划项目(批准号:桂科攻0992002-15)及国家自然科学基金(批准号:10772126)资助的课题.

摘要: 利用自行设计与集成的二级6—8型大腔体静高压装置,研究了影响八面体压腔高压发生效率的主要因素及机理,并提出了一种八面体压腔密封的简化力学模型.针对于10/4(八面体传压介质边长为10 mm,二级WC立方体增压块截角边长为4 mm)组装的实验结果发现:预密封边尺寸会显著影响八面体压腔的压力产生效率;在腔体压力为12 GPa左右时,高压发生效率随八面体MgO传压介质初始密度的增加而提高;在15 GPa以上时,影响压力产生效率的主要因素是WC增压立方块本身的强度以及加压过程中所形成密封边的尺寸及材料.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回