-
利用齐次平衡方法,将(2+1)维 Konopelchenko-Dubrovsky方程转化为两个变量分离的线性偏微分方程,然后采用三种不同的函数假设,得到相应的常系数微分方程,通过求解特征方程,方便地构造出Konopelchenko-Dubrovsky方程新的多孤子解.
-
关键词:
- (2+1)维 Konopelchenko-Dubrovsky 方程 /
- 齐次平衡法 /
- 多孤子解
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 Appl.Phys. 53 249
[3] Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248(in Chinese) [朱加民、马正义、郑春龙 2004 物理学报 53 3248]
[4] Zhang J F 2000 J. Huaihua Teachers College 19 11(in Chinese)[张解放 2000 怀化师专学报 19 11]
[5] Fan E G, Zhang H Q 1998 Phys. Lett. A 246 403
[6] Lou S Y 2002 J. Math. Phys. 22 4078
[7] Wang M L 1996 Phys. Lett. A 213 279
[8] Fan E G 2003 J. Phys. A 36 7009
[9] Zhang J F 1998 Acta Phys. Sin. 47 1416 (in Chinese) [张解放 1998 物理学报 47 1416]
[10] Konopelchenko B G, Dubrovsky V G 1984 Phys. Lett. A 102 15
[11] Maccari A 1999 J. Math. Phys. 40 3971
[12] Song L N, Zhang H Q 2006 Commun. Theor.Phys. 45 769
[13] Abdul M J, Waz W 2007 Math. Comput.Modell. 45 473
[14] Zhang J L, Zhang L Y, Wang M L 2005 Chin. Quart.J. of Math. 20 72
[15] Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. 44 407
[16] Huang W H, Liu M S, Yang H 2004 J. Huzhou Teachers College 26 45 (in Chinese)[黄文华、刘毛生、杨 慧 2004 湖州师范学院学报 26 45]
[17] Lin J, Lou S Y, Wang K L 2001 Chin. Phys.Lett. 9 1173
[18] Zhao H, Han J G, Wang W T 2006 Czech. J. Phys. 56 1381
-
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 Appl.Phys. 53 249
[3] Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248(in Chinese) [朱加民、马正义、郑春龙 2004 物理学报 53 3248]
[4] Zhang J F 2000 J. Huaihua Teachers College 19 11(in Chinese)[张解放 2000 怀化师专学报 19 11]
[5] Fan E G, Zhang H Q 1998 Phys. Lett. A 246 403
[6] Lou S Y 2002 J. Math. Phys. 22 4078
[7] Wang M L 1996 Phys. Lett. A 213 279
[8] Fan E G 2003 J. Phys. A 36 7009
[9] Zhang J F 1998 Acta Phys. Sin. 47 1416 (in Chinese) [张解放 1998 物理学报 47 1416]
[10] Konopelchenko B G, Dubrovsky V G 1984 Phys. Lett. A 102 15
[11] Maccari A 1999 J. Math. Phys. 40 3971
[12] Song L N, Zhang H Q 2006 Commun. Theor.Phys. 45 769
[13] Abdul M J, Waz W 2007 Math. Comput.Modell. 45 473
[14] Zhang J L, Zhang L Y, Wang M L 2005 Chin. Quart.J. of Math. 20 72
[15] Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. 44 407
[16] Huang W H, Liu M S, Yang H 2004 J. Huzhou Teachers College 26 45 (in Chinese)[黄文华、刘毛生、杨 慧 2004 湖州师范学院学报 26 45]
[17] Lin J, Lou S Y, Wang K L 2001 Chin. Phys.Lett. 9 1173
[18] Zhao H, Han J G, Wang W T 2006 Czech. J. Phys. 56 1381
引用本文: |
Citation: |
计量
- 文章访问数: 4391
- PDF下载量: 1082
- 被引次数: 0