搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米复合永磁材料中软磁性相交换硬化的研究

张帅 陈喜芳 阴津华 张宏伟 陈京兰 姜宏伟 吴光恒

纳米复合永磁材料中软磁性相交换硬化的研究

张帅, 陈喜芳, 阴津华, 张宏伟, 陈京兰, 姜宏伟, 吴光恒
PDF
导出引用
  • 本文就纳米复合永磁材料中软磁相被交换硬化问题,从一维模型和三维模拟计算进行了分析研究. 一维和三维各向异性样品研究表明,在相同微结构下,当硬磁相的各向异性降低时,除矫顽力降低外,在磁矩全部反转之前退磁曲线是一样的. 因此,硬磁相各向异性的降低不会导致最大磁能积(BH)max增大和剩磁增加. 对于三维各向同性样品的模拟计算表明,降低硬磁相的各向异性会使剩磁和(BH)max都明显降低. 因此,增强硬磁相的各向异性并增大硬磁相晶粒尺寸是提高
    • 基金项目: 国家自然科学基金(批准号:10774178)和北京市教育委员会学科与研究生教育建设项目专项资助的课题.
    [1]

    Coehoorn R, Mooji D B, Waard C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Kneller E F, Hawig R 1991 IEEE Trans. On. Magn.27 3588

    [3]

    Skomski R, Coey J M D, 1993 Phys. Rev. B 48 15812

    [4]

    Goll D, Seeger M, Kronmuller H 1998 J. Magn. Magn. Mater. 185 49

    [5]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [6]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. On. Magn. 42 2912

    [7]

    Yue M, Niu P L, Li Y L, Zhang D T, Liu W Q, Zhang J X, Chen C H, Liu S, Lee D, Higgins A 2008 J. Appl. Phys. 103 07E101

    [8]

    Zhao T, Xiao Q F, Zhang Z D, Dahlgren M, Grossinger R, Buschow K H J, Boer F R 1999 Appl. Phys. Lett. 75 02298

    [9]

    Chen W, Gao R W, Liu L M, Zhu M G, Han G B, Liu H Q, Li W 2004 Mater. Sci. Eng. B 110 107

    [10]

    Zhang M, Zhang Z D, Sun X K, Liu W, Geng D Y, Jin X M, You C Y, Zhao X G 2004 J. Alloys Compd. 372 267

    [11]

    Yang S, Song X P, Gu B X, Du Y W 2005 J. Alloys and Comp. 394 1

    [12]

    Liu Z W, Liu Y, Deheri P K, Ramanujan R V, Davies H A 2009 J. Magn. Magn. Mater. 321 2290

    [13]

    Zhang H W, Li B H, Wang J, Zhang J, Zhang S Y, Shen B G 2000 J. Phys. D: Appl. Phys. 33 3022

    [14]

    Fischer R, Kronmüller H 1996 Phys. Rev. B 54 7284

    [15]

    Li B H, Zhang H W, Zhang J, Wang Y, Zhang S Y 2001 Chin. Phys. 10 1054

    [16]

    Zhang H W, Zhao T Y, Rong C B, Zhang S Y, Han B S, Shen B G 2003 J. Magn. Magn. Mater. 267 224

    [17]

    Liu J P, Skomski R, Liu Y, Sellmyer D J 2000 J. Appl. Phys. 87 6740

    [18]

    Yin J H, Sun Z G, Z. R. Zhang Z R, Zhang H W, Shen B G 2001 J. Appl. Phys. 89 8351

    [19]

    Galindo J T E, Bhuiya A W, G'omez F R, Aquino J A M, Botez C E 2008 J. Phys. D: Appl. Phys. 41 095008

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127

    [21]

    Zhang H W, Sun Z G, Zhang S Y, Han B S, Shen B G, Tung I C, Chin T S 1999 Phys. Rev. B 60 64

  • [1]

    Coehoorn R, Mooji D B, Waard C 1989 J. Magn. Magn. Mater. 80 101

    [2]

    Kneller E F, Hawig R 1991 IEEE Trans. On. Magn.27 3588

    [3]

    Skomski R, Coey J M D, 1993 Phys. Rev. B 48 15812

    [4]

    Goll D, Seeger M, Kronmuller H 1998 J. Magn. Magn. Mater. 185 49

    [5]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [6]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. On. Magn. 42 2912

    [7]

    Yue M, Niu P L, Li Y L, Zhang D T, Liu W Q, Zhang J X, Chen C H, Liu S, Lee D, Higgins A 2008 J. Appl. Phys. 103 07E101

    [8]

    Zhao T, Xiao Q F, Zhang Z D, Dahlgren M, Grossinger R, Buschow K H J, Boer F R 1999 Appl. Phys. Lett. 75 02298

    [9]

    Chen W, Gao R W, Liu L M, Zhu M G, Han G B, Liu H Q, Li W 2004 Mater. Sci. Eng. B 110 107

    [10]

    Zhang M, Zhang Z D, Sun X K, Liu W, Geng D Y, Jin X M, You C Y, Zhao X G 2004 J. Alloys Compd. 372 267

    [11]

    Yang S, Song X P, Gu B X, Du Y W 2005 J. Alloys and Comp. 394 1

    [12]

    Liu Z W, Liu Y, Deheri P K, Ramanujan R V, Davies H A 2009 J. Magn. Magn. Mater. 321 2290

    [13]

    Zhang H W, Li B H, Wang J, Zhang J, Zhang S Y, Shen B G 2000 J. Phys. D: Appl. Phys. 33 3022

    [14]

    Fischer R, Kronmüller H 1996 Phys. Rev. B 54 7284

    [15]

    Li B H, Zhang H W, Zhang J, Wang Y, Zhang S Y 2001 Chin. Phys. 10 1054

    [16]

    Zhang H W, Zhao T Y, Rong C B, Zhang S Y, Han B S, Shen B G 2003 J. Magn. Magn. Mater. 267 224

    [17]

    Liu J P, Skomski R, Liu Y, Sellmyer D J 2000 J. Appl. Phys. 87 6740

    [18]

    Yin J H, Sun Z G, Z. R. Zhang Z R, Zhang H W, Shen B G 2001 J. Appl. Phys. 89 8351

    [19]

    Galindo J T E, Bhuiya A W, G'omez F R, Aquino J A M, Botez C E 2008 J. Phys. D: Appl. Phys. 41 095008

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127

    [21]

    Zhang H W, Sun Z G, Zhang S Y, Han B S, Shen B G, Tung I C, Chin T S 1999 Phys. Rev. B 60 64

  • [1] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [2] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr8Fe87B5反磁化机理研究. 物理学报, 2003, 52(3): 722-725. doi: 10.7498/aps.52.722
    [3] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [4] 贺淑莉, 张宏伟, 荣传兵, 陈仁杰, 孙继荣, 沈保根. 晶粒易轴取向度对纳米晶永磁Pr2Fe14B磁性的影响. 物理学报, 2005, 54(7): 3408-3413. doi: 10.7498/aps.54.3408
    [5] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [6] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力. 物理学报, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [7] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理. 物理学报, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [8] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [9] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究. 物理学报, 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [10] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根. 纳米复合永磁Pr9Fe74Co12B5Snx(x=0, 0.5)的磁化行为与磁黏滞性. 物理学报, 2005, 54(12): 5890-5894. doi: 10.7498/aps.54.5890
    [11] 荣传兵, 张宏伟, 张 健, 张绍英, 沈保根. 纳米晶永磁中面缺陷对畴壁钉扎机理的研究. 物理学报, 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [12] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜. 物理学报, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [13] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [14] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [15] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力. 物理学报, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [16] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究. 物理学报, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [17] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究. 物理学报, 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [18] 陈宪锋. R2Fe14B型永磁材料中第二磁晶各向异性常数对反磁化过程的影响. 物理学报, 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [19] 于冬亮, 杨绍光, 都有为. Co纳米孔洞模板的制备和磁性. 物理学报, 2002, 51(8): 1784-1787. doi: 10.7498/aps.51.1784
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响. 物理学报, 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4638
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-28
  • 修回日期:  2010-01-21
  • 刊出日期:  2010-09-15

纳米复合永磁材料中软磁性相交换硬化的研究

  • 1. (1)首都师范大学物理系,北京 100048; (2)中国科学院物理研究所和北京凝聚态物理国家实验室,北京 100190; (3)中国科学院物理研究所和北京凝聚态物理国家实验室,北京 100190;北京科技大学物理系,北京 100086; (4)中国科学院物理研究所和北京凝聚态物理国家实验室,北京 100190;首都师范大学物理系,北京 100048
    基金项目: 

    国家自然科学基金(批准号:10774178)和北京市教育委员会学科与研究生教育建设项目专项资助的课题.

摘要: 本文就纳米复合永磁材料中软磁相被交换硬化问题,从一维模型和三维模拟计算进行了分析研究. 一维和三维各向异性样品研究表明,在相同微结构下,当硬磁相的各向异性降低时,除矫顽力降低外,在磁矩全部反转之前退磁曲线是一样的. 因此,硬磁相各向异性的降低不会导致最大磁能积(BH)max增大和剩磁增加. 对于三维各向同性样品的模拟计算表明,降低硬磁相的各向异性会使剩磁和(BH)max都明显降低. 因此,增强硬磁相的各向异性并增大硬磁相晶粒尺寸是提高

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回