搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个三维四翼自治混沌系统的拓扑马蹄分析

陈增强 叶菲 贾红艳

一个三维四翼自治混沌系统的拓扑马蹄分析

陈增强, 叶菲, 贾红艳
PDF
导出引用
导出核心图
  • 基于拓扑马蹄映射理论,验证了一个三维四翼自治的混沌系统的拓扑马蹄的存在.由于该混沌系统是连续系统,首先选取了一个Poincaré截面,并在该截面下定义了该混沌系统的一个一次回归Poincaré映射.通过利用计算机辅助证明方法,得出了该映射与一个2移位映射拓扑半共扼,说明该三维四翼自治系统的拓扑熵大于或等于ln2,进而证明了该系统的混沌行为.
    • 基金项目: 国家自然科学基金(批准号:60774088和10772135),高等学校博士学科点专项科研基金(批准号:20090031110029 ),天津市市应用基础及前沿技术研究计划(批准号:08JCZDJC21900), 天津市高等学校科技发展基金(批准号:20088026),国家教育部留学回国人员科研启动基金资助的课题.
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos. 9 1465

    [3]

    Lü J H, Chen G R, Cheng D Z, Celikovsky S 2002 Int. J. Bifur. Chaos. 12 2917

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [5]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitons & Fractals 22 1031

    [6]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [7]

    Liu C X 2007 Acta Phys. Sin. 56 6865 (in Chinese) [刘崇新 2007 物理学报 56 6865]

    [8]

    Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 3922(in Chinese) [王发强、刘崇新 2006 物理学报 55 3922]

    [9]

    Chen X R, Liu C X, Wang F Q, Liu Y X 2008 Acta Phys. Sin. 57 1416(in Chinese) [陈向荣、刘崇新、王发强、李永勋 2008 物理学报 57 1416]

    [10]

    Wang F Z, Qi G Y, Chen Z Q, Yuan Z Z 2007 Acta Phys. Sin. 56 3137(in Chinese)[王繁珍、齐国元、陈增强、袁著祉 2007 物理学报 56 3137]

    [11]

    Qi G Y, Chen G R, van Wyk M A, van Wyk B J, Zhang Y H 2008 Chaos Solitons & Fractals 38 705

    [12]

    Chen Z Q, Yang Y, Yuan Z Z 2008 Chaos, Solitons & Fractals 38 1187

    [13]

    Li Y X, Wallace K. S. Tang, Chen G R 2005 Int. J. Circ. Theor. Appl. 33 235

    [14]

    Wang J Z, Chen Z Q, Chen G R, Yuan Z Z 2008 Int. J. Bifur. Chaos. 18 3309

    [15]

    Jia H Y, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin.58 4469[贾红艳、陈增强、袁著祉 2009 物理学报 58 4469]

    [16]

    Yu S M, Lü J H, Chen G R. 2007 Physics letter A 364 244

    [17]

    Cang S J, Chen Z Q, Yuan Z Z 2008 Acta Phys. Sin. 57 1493 (in Chinese) [仓诗建、陈增强、袁著祉 2008 物理学报 57 1493]

    [18]

    Udaltsov VS, Goedgebuer J P, Larger L, Cuenot J B, Rhodes W T 2003 Optics and Spectroscopy. 95 114

    [19]

    Hsieh J Y, Hwang C C, Wang A P, Li W J 1999 International Journal of Control. 72 882

    [20]

    Song Y Z 2007 Chin. Phys. 16 1918

    [21]

    Song Y Z Zhao G Z, Qi D L 2006 Chin. Phys. 15 2266

    [22]

    Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer-Verlag) p421

    [23]

    Kennedy J, Kocak S, Yorke J A 2001 Amer. Math.Mon. 208 411

    [24]

    Kennedy J, Yorke J A 2001 Trans. Amer. Math.Soc. 353 2513

    [25]

    Yang X S, Tang Y 2004 Chaos, Solitons & Fractals 19 841

    [26]

    Yang X S 2004 Chaos, Solitons & Fractals 20 1149

    [27]

    Yang X S, Yu Y G, Zhang S C 2003 Chaos, Solitons & Fractals 18 223

    [28]

    Yang X S, Li Q D 2005 Int. J. Bifur. Chaos. 15 1823

    [29]

    Huang Y, Yang X S 2005 Chaos, Solitons & Fractals 26 79

    [30]

    Yang X S, Li Q D 2004 Int. J. Bifur. Chaos. 14 1847

    [31]

    Wu W J, Chen Z Q, Yuan Z Z 2009 Solitons & Fractals 41 2756

    [32]

    Wu W J, Chen Z Q, Yuan Z Z 2008 The 9th International Conference for Young Computer Scientists. Zhang Jia Jie, Hunan, China, November 18—21, 2008 p3033

    [33]

    Wu W J, Chen Z Q, Chen G R 2009 International Workshop on Chaos-Fractals Theories and Applications. Shenyang, Liaoning, China, November 6—8, 2009 p277

    [34]

    Chen Z Q, Yang Y, Qi G Y, Yuan Z Z 2007 Phys. Lett. A 360 696

    [35]

    Wang J Z, Chen Z Q, Yuan Z Z 2006 Chin. Phys. 15 1216

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos. 9 1465

    [3]

    Lü J H, Chen G R, Cheng D Z, Celikovsky S 2002 Int. J. Bifur. Chaos. 12 2917

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659

    [5]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitons & Fractals 22 1031

    [6]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [7]

    Liu C X 2007 Acta Phys. Sin. 56 6865 (in Chinese) [刘崇新 2007 物理学报 56 6865]

    [8]

    Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 3922(in Chinese) [王发强、刘崇新 2006 物理学报 55 3922]

    [9]

    Chen X R, Liu C X, Wang F Q, Liu Y X 2008 Acta Phys. Sin. 57 1416(in Chinese) [陈向荣、刘崇新、王发强、李永勋 2008 物理学报 57 1416]

    [10]

    Wang F Z, Qi G Y, Chen Z Q, Yuan Z Z 2007 Acta Phys. Sin. 56 3137(in Chinese)[王繁珍、齐国元、陈增强、袁著祉 2007 物理学报 56 3137]

    [11]

    Qi G Y, Chen G R, van Wyk M A, van Wyk B J, Zhang Y H 2008 Chaos Solitons & Fractals 38 705

    [12]

    Chen Z Q, Yang Y, Yuan Z Z 2008 Chaos, Solitons & Fractals 38 1187

    [13]

    Li Y X, Wallace K. S. Tang, Chen G R 2005 Int. J. Circ. Theor. Appl. 33 235

    [14]

    Wang J Z, Chen Z Q, Chen G R, Yuan Z Z 2008 Int. J. Bifur. Chaos. 18 3309

    [15]

    Jia H Y, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin.58 4469[贾红艳、陈增强、袁著祉 2009 物理学报 58 4469]

    [16]

    Yu S M, Lü J H, Chen G R. 2007 Physics letter A 364 244

    [17]

    Cang S J, Chen Z Q, Yuan Z Z 2008 Acta Phys. Sin. 57 1493 (in Chinese) [仓诗建、陈增强、袁著祉 2008 物理学报 57 1493]

    [18]

    Udaltsov VS, Goedgebuer J P, Larger L, Cuenot J B, Rhodes W T 2003 Optics and Spectroscopy. 95 114

    [19]

    Hsieh J Y, Hwang C C, Wang A P, Li W J 1999 International Journal of Control. 72 882

    [20]

    Song Y Z 2007 Chin. Phys. 16 1918

    [21]

    Song Y Z Zhao G Z, Qi D L 2006 Chin. Phys. 15 2266

    [22]

    Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer-Verlag) p421

    [23]

    Kennedy J, Kocak S, Yorke J A 2001 Amer. Math.Mon. 208 411

    [24]

    Kennedy J, Yorke J A 2001 Trans. Amer. Math.Soc. 353 2513

    [25]

    Yang X S, Tang Y 2004 Chaos, Solitons & Fractals 19 841

    [26]

    Yang X S 2004 Chaos, Solitons & Fractals 20 1149

    [27]

    Yang X S, Yu Y G, Zhang S C 2003 Chaos, Solitons & Fractals 18 223

    [28]

    Yang X S, Li Q D 2005 Int. J. Bifur. Chaos. 15 1823

    [29]

    Huang Y, Yang X S 2005 Chaos, Solitons & Fractals 26 79

    [30]

    Yang X S, Li Q D 2004 Int. J. Bifur. Chaos. 14 1847

    [31]

    Wu W J, Chen Z Q, Yuan Z Z 2009 Solitons & Fractals 41 2756

    [32]

    Wu W J, Chen Z Q, Yuan Z Z 2008 The 9th International Conference for Young Computer Scientists. Zhang Jia Jie, Hunan, China, November 18—21, 2008 p3033

    [33]

    Wu W J, Chen Z Q, Chen G R 2009 International Workshop on Chaos-Fractals Theories and Applications. Shenyang, Liaoning, China, November 6—8, 2009 p277

    [34]

    Chen Z Q, Yang Y, Qi G Y, Yuan Z Z 2007 Phys. Lett. A 360 696

    [35]

    Wang J Z, Chen Z Q, Yuan Z Z 2006 Chin. Phys. 15 1216

  • [1] 李清都, 唐宋. 三维超混沌映射拓扑马蹄寻找算法及应用. 物理学报, 2013, 62(2): 020510. doi: 10.7498/aps.62.020510
    [2] 余飞, 王春华, 尹晋文, 徐浩. 一个具有完全四翼形式的四维混沌. 物理学报, 2012, 61(2): 020506. doi: 10.7498/aps.61.020506
    [3] 郝建红, 孙娜燕. 损耗型变形耦合电机系统的混沌参数特性. 物理学报, 2012, 61(15): 150504. doi: 10.7498/aps.61.150504
    [4] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [5] 翁甲强, 孔令江, 陈光旨. RLm子区拓扑熵等值性的证明. 物理学报, 1987, 36(12): 1583-1589. doi: 10.7498/aps.36.1583
    [6] 陈式刚, 陈瑞熊. 一维单峰映象的拓扑熵. 物理学报, 1986, 35(10): 1338-1346. doi: 10.7498/aps.35.1338
    [7] 陈瑞熊. 逆轨道分析法确定一维映象的拓扑熵. 物理学报, 1989, 38(9): 1501-1505. doi: 10.7498/aps.38.1501
    [8] 周漩, 杨帆, 张凤鸣, 周卫平, 邹伟. 复杂网络系统拓扑连接优化控制方法. 物理学报, 2013, 62(15): 150201. doi: 10.7498/aps.62.150201
    [9] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [10] 罗开发, 余睿. 电路中的拓扑态. 物理学报, 2019, 68(22): 220305. doi: 10.7498/aps.68.20191398
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3462
  • PDF下载量:  947
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-06
  • 修回日期:  2010-04-27
  • 刊出日期:  2011-01-15

一个三维四翼自治混沌系统的拓扑马蹄分析

  • 1. (1)南开大学自动化系,天津 300071; (2)天津大学自动化系,天津 300072; (3)天津科技大学自动化系,天津 300222;南开大学自动化系,天津 300071
    基金项目: 

    国家自然科学基金(批准号:60774088和10772135),高等学校博士学科点专项科研基金(批准号:20090031110029 ),天津市市应用基础及前沿技术研究计划(批准号:08JCZDJC21900), 天津市高等学校科技发展基金(批准号:20088026),国家教育部留学回国人员科研启动基金资助的课题.

摘要: 基于拓扑马蹄映射理论,验证了一个三维四翼自治的混沌系统的拓扑马蹄的存在.由于该混沌系统是连续系统,首先选取了一个Poincaré截面,并在该截面下定义了该混沌系统的一个一次回归Poincaré映射.通过利用计算机辅助证明方法,得出了该映射与一个2移位映射拓扑半共扼,说明该三维四翼自治系统的拓扑熵大于或等于ln2,进而证明了该系统的混沌行为.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回