搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

池沸腾中气泡生长过程的格子Boltzmann方法模拟

曾建邦 李隆键 廖全 蒋方明

池沸腾中气泡生长过程的格子Boltzmann方法模拟

曾建邦, 李隆键, 廖全, 蒋方明
PDF
导出引用
导出核心图
  • 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0
    • 基金项目: 国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.
    [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • 引用本文:
    Citation:
计量
  • 文章访问数:  5948
  • PDF下载量:  888
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-05
  • 修回日期:  2010-10-05
  • 刊出日期:  2011-03-05

池沸腾中气泡生长过程的格子Boltzmann方法模拟

  • 1. (1)中国科学院可再生能源与天然气水合物重点实验室,广州 510640; (2)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030; (3)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;中国科学院可再生能源与天然气水合物重点实验室,广州 510640
    基金项目: 

    国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.

摘要: 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回