搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质

杨琼芬 聂汉 陈自然 李权 赵可清

三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质

杨琼芬, 聂汉, 陈自然, 李权, 赵可清
PDF
导出引用
导出核心图
  • 电荷传输是有机电子材料的重要性质. 根据Marcus理论模型, 电荷传输为电子-电子相互作用和电子-声子相互作用过程, 电子-声子相互作用耦合强度越大, 重组能越大, 不利于电荷传输. 电子-电子相互作用耦合强度越大, 电荷传输矩阵元越大, 有利于电荷传输. 对含1, 2, 4-三唑、1, 2, 3-三唑和1, 2, 3-三氮-2, 3环戊烯边链的苯并菲衍生物分子的电荷传输性质进行理论研究. 结果表明, 含1, 2, 3-三唑的苯并菲衍生物分子的空穴传输速率和电子传输速率相当, 速率常数为21012s-1. 含1, 2, 4-三唑的苯并菲衍生物分子的空穴传输速率常数为51012s-1, 约为电子传输速率常数的10倍. 含1, 2, 3-三氮-2, 3环戊烯的苯并菲衍生物分子的电子传输速率常数为31012s-1, 约为空穴传输速率常数的10倍. 目标分子的空穴传输或电子传输速率主要受传输矩阵元的影响, 即电子-电子相互作用耦合强度的大小决定传输速率的变化.
      通信作者: 李权, liquan6688@163.com
    • 基金项目: 国家自然科学基金(批准号:50973076)、四川省科技计划项目(批准号:2010JY0041)和四川师范大学科研基金(批准号:09ZDL03,025156)资助的课题.
    [1]

    Schmidt-Mende L, Fechtenk? tter A, Müllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119

    [2]

    Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902

    [3]

    Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832

    [4]

    Feng X,Marcon V, PisulaW, HansenMR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K 2009 Nat. Mater. 8 421

    [5]

    Bai Y F, Zhao K Q, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60

    [6]

    Ji H, Zhao K Q, Yu WH,Wang B Q, Hu P 2009 Sci. China Ser. B Chem. 52 975

    [7]

    Kumar S 2004 Liq. Cryst. 31 1037

    [8]

    Chen J R, Cai J, Xu B Y, Li Q, Zhao K Q 2008 Chin. J. Chem. 26 2292

    [9]

    Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China Ser B Chem. 52 1192

    [10]

    Sun D G, Ding F J, Zhao K Q 2008 Acta Chim. Sinica 66 738 (in Chinese)[孙定光, 丁涪江, 赵可清 2008 化学学报 66 738]

    [11]

    Conte G, Ely F, Gallardo H 2005 Liq. Cryst. 32 1213

    [12]

    Gallardo H, Bortoluzzi A J, Santos D M P O 2008 Liq. Cryst. 35 719

    [13]

    Yu W H, Nie S C, Bai Y F, Jing Y, Wang B Q, Hu P, Zhao K Q 2010 Sci. China Ser B Chem. 53 1134

    [14]

    Zhao K Q, Bai Y F, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 819

    [15]

    Yang Y, Zhao K Q, Yu W H, Wang B Q, Hu P 2010 Key Eng. Mater. 428–429 135

    [16]

    Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271

    [17]

    Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gon-zalez C, Head-Gordon M, Replogle E S, Pople G A 2003 Gaussian 03, Revision B. 05, Gaussian, Inc. Pittsburgh PA

  • [1]

    Schmidt-Mende L, Fechtenk? tter A, Müllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119

    [2]

    Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902

    [3]

    Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832

    [4]

    Feng X,Marcon V, PisulaW, HansenMR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K 2009 Nat. Mater. 8 421

    [5]

    Bai Y F, Zhao K Q, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60

    [6]

    Ji H, Zhao K Q, Yu WH,Wang B Q, Hu P 2009 Sci. China Ser. B Chem. 52 975

    [7]

    Kumar S 2004 Liq. Cryst. 31 1037

    [8]

    Chen J R, Cai J, Xu B Y, Li Q, Zhao K Q 2008 Chin. J. Chem. 26 2292

    [9]

    Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China Ser B Chem. 52 1192

    [10]

    Sun D G, Ding F J, Zhao K Q 2008 Acta Chim. Sinica 66 738 (in Chinese)[孙定光, 丁涪江, 赵可清 2008 化学学报 66 738]

    [11]

    Conte G, Ely F, Gallardo H 2005 Liq. Cryst. 32 1213

    [12]

    Gallardo H, Bortoluzzi A J, Santos D M P O 2008 Liq. Cryst. 35 719

    [13]

    Yu W H, Nie S C, Bai Y F, Jing Y, Wang B Q, Hu P, Zhao K Q 2010 Sci. China Ser B Chem. 53 1134

    [14]

    Zhao K Q, Bai Y F, Hu P,Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 819

    [15]

    Yang Y, Zhao K Q, Yu W H, Wang B Q, Hu P 2010 Key Eng. Mater. 428–429 135

    [16]

    Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271

    [17]

    Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gon-zalez C, Head-Gordon M, Replogle E S, Pople G A 2003 Gaussian 03, Revision B. 05, Gaussian, Inc. Pittsburgh PA

  • [1] 胡競丹, 蔡 静, 陈俊蓉, 李 权, 赵可清. 六氮杂苯并菲及其衍生物电荷传输性质的理论研究. 物理学报, 2008, 57(9): 5464-5468. doi: 10.7498/aps.57.5464
    [2] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究. 物理学报, 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
    [3] 寇东星, 姜年权, 刘伟庆, 胡林华, 黄阳, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究. 物理学报, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [4] 朱振业, 郑 跃, 王 海, 李青坤, 李晨亮, 王 彪. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报, 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [5] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [6] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质. 物理学报, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [7] 史良马, 周明健, 张晴晴, 张宏彬. 三维介观超导环的涡旋结构. 物理学报, 2016, 65(4): 047501. doi: 10.7498/aps.65.047501
    [8] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [9] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [10] 吴世海, 胡明亮, 李季, 惠小强. 用约瑟夫森电荷比特系统实现一种特殊量子态的传输. 物理学报, 2011, 60(1): 010302. doi: 10.7498/aps.60.010302
    [11] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [12] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [13] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料. 物理学报, 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [14] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [15] 郑一丹, 毛竹, 周斌. 具有三角自旋环的伊辛-海森伯链的热纠缠. 物理学报, 2017, 66(23): 230304. doi: 10.7498/aps.66.230304
    [16] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [17] 袁志林, 张淳民, 孙明昭, 宋晓平. 基于三角谐振环的新型六边形谐振环金属线复合周期结构左手材料性质研究. 物理学报, 2009, 58(3): 1758-1764. doi: 10.7498/aps.58.1758
    [18] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究. 物理学报, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [19] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [20] 王伟, 周常河, 余俊杰. 三环位相型光瞳滤波器的横向超分辨与轴向焦深扩展. 物理学报, 2011, 60(2): 024201. doi: 10.7498/aps.60.024201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2013
  • PDF下载量:  565
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-14
  • 修回日期:  2011-07-06
  • 刊出日期:  2012-03-05

三唑和环戊烯苯并菲衍生物盘状液晶分子的电荷传输性质

  • 1. 四川师范大学化学与材料科学学院, 先进功能材料四川省高校重点实验室, 成都 610066;
  • 2. 四川职业技术学院建筑与环境系, 遂宁 629000
  • 通信作者: 李权, liquan6688@163.com
    基金项目: 

    国家自然科学基金(批准号:50973076)、四川省科技计划项目(批准号:2010JY0041)和四川师范大学科研基金(批准号:09ZDL03,025156)资助的课题.

摘要: 电荷传输是有机电子材料的重要性质. 根据Marcus理论模型, 电荷传输为电子-电子相互作用和电子-声子相互作用过程, 电子-声子相互作用耦合强度越大, 重组能越大, 不利于电荷传输. 电子-电子相互作用耦合强度越大, 电荷传输矩阵元越大, 有利于电荷传输. 对含1, 2, 4-三唑、1, 2, 3-三唑和1, 2, 3-三氮-2, 3环戊烯边链的苯并菲衍生物分子的电荷传输性质进行理论研究. 结果表明, 含1, 2, 3-三唑的苯并菲衍生物分子的空穴传输速率和电子传输速率相当, 速率常数为21012s-1. 含1, 2, 4-三唑的苯并菲衍生物分子的空穴传输速率常数为51012s-1, 约为电子传输速率常数的10倍. 含1, 2, 3-三氮-2, 3环戊烯的苯并菲衍生物分子的电子传输速率常数为31012s-1, 约为空穴传输速率常数的10倍. 目标分子的空穴传输或电子传输速率主要受传输矩阵元的影响, 即电子-电子相互作用耦合强度的大小决定传输速率的变化.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回