搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究

谭瑞山 刘新国 胡梅

Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究

谭瑞山, 刘新国, 胡梅
PDF
导出引用
导出核心图
  • 基于2003年Alfredo Aguado 等人构造的新势能面(Aguado和Paniagua. J. Chem. Phys., Vol. 119, No. 19, 2003), 本文结合振动激发和碰撞能两个因素,采用准经典轨线的方法对反应Li+HF(v=0–3) 的k-j' 两矢量相关和k-k'-j'三矢量相关的分布函数及极化微分反应截面进行了详细的立体动力学研究. 结果表明, 描述三原子分子反应的k-j'两矢量相关联的函数P(θr)分布不受振动激发影响, 而碰撞能则对其影响较大. 描述 k-k'-j'三矢量相关的函数P(φr)分布和极化微分反应截面对振动激发较敏感, 同时我们发现碰撞能对P(φr)分布和极化微分反应截面也有较大影响.
    • 基金项目: 国家自然科学基金 (批准号: 11274205, 11274206) 资助的课题.
    [1]

    Xu W W, Liu X G, Luan S X, Sun S S, Zhang Q G 2009 Chin. Phys. B 18 339

    [2]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 物理学报 59 779]

    [3]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [4]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [5]

    Xu W W, Liu X G, Luan S X, Zhang Q G 2009 Chem. Phys. 355 21

    [6]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [7]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [8]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [9]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [10]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [11]

    Hobel O, Paladini A, Russo A, Bobbenkamp R, Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198

    [12]

    Herschbach D R 1996 Adv. Chem. Phys. 10 319

    [13]

    Odiorne T J, Brooks P R, Kasper J V V 1971 J. Chem. Phys. 55 1980

    [14]

    Pruett J G, Zare R N 1976 J. Chem. Phys. 64 1774

    [15]

    Karny Z, Estler R C, Zare R N 1978 J. Chem. Phys. 69 5199

    [16]

    Karny Z , Zare R N 1978 J. Chem. Phys. 68 3360

    [17]

    Bartoszek F E, Blackwell B A, Polanyi J C, Sloan J J 1981 J. Chem. Phys. 74 3400

    [18]

    Zhang R, Rakestraw D J, McKendrick K G, Zare R N 1988 J. Chem. Phys. 89 6283

    [19]

    Hoffmeister M, Schleysing R, Stienkemeier F, Loesch H J 1989 J. Chem. Phys. 90 3528

    [20]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [21]

    Suarez C, Aguado A, Tablero C, Paniagua M 1994 Int. J. Quantum Chem. 52 935

    [22]

    Becker C H, Casavecchia P, Tiedemann P W, Valentini J J, Lee Y T 1980 J. Chem. Phys. 73 2833

    [23]

    Aguado A, Sufirez C, Paniagua M 1995 Chem. Phys. 201 107

    [24]

    Aguado A, Paniagua M 1997 J. Chem. Phys. 106 1013

    [25]

    Yuan M H Zhao G J 2010 Int J Quantum Chem 110 1842

    [26]

    Wang T Yue X F 2011 Chin. Phys. Lett. 28 023101

    [27]

    Jasper A W, Hack M D, Truhlar D G 2002 J. Chem. Phys. 116 8353

    [28]

    Aguado A, Paniagua M 2003 J. Chem. Phys. 119 10088

    [29]

    Aoiz F J, Brouard M, Herrero V J, SaezRabanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [30]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [31]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [32]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [33]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [34]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [35]

    Li W L, Wang M S, Yang C L , Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [36]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [37]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [38]

    Zhang X, Han K L 2006Int. Quantum Chem. 106 1815

    [39]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [40]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

    [41]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [42]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

  • [1]

    Xu W W, Liu X G, Luan S X, Sun S S, Zhang Q G 2009 Chin. Phys. B 18 339

    [2]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 物理学报 59 779]

    [3]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [4]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [5]

    Xu W W, Liu X G, Luan S X, Zhang Q G 2009 Chem. Phys. 355 21

    [6]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [7]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [8]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [9]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [10]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [11]

    Hobel O, Paladini A, Russo A, Bobbenkamp R, Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198

    [12]

    Herschbach D R 1996 Adv. Chem. Phys. 10 319

    [13]

    Odiorne T J, Brooks P R, Kasper J V V 1971 J. Chem. Phys. 55 1980

    [14]

    Pruett J G, Zare R N 1976 J. Chem. Phys. 64 1774

    [15]

    Karny Z, Estler R C, Zare R N 1978 J. Chem. Phys. 69 5199

    [16]

    Karny Z , Zare R N 1978 J. Chem. Phys. 68 3360

    [17]

    Bartoszek F E, Blackwell B A, Polanyi J C, Sloan J J 1981 J. Chem. Phys. 74 3400

    [18]

    Zhang R, Rakestraw D J, McKendrick K G, Zare R N 1988 J. Chem. Phys. 89 6283

    [19]

    Hoffmeister M, Schleysing R, Stienkemeier F, Loesch H J 1989 J. Chem. Phys. 90 3528

    [20]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [21]

    Suarez C, Aguado A, Tablero C, Paniagua M 1994 Int. J. Quantum Chem. 52 935

    [22]

    Becker C H, Casavecchia P, Tiedemann P W, Valentini J J, Lee Y T 1980 J. Chem. Phys. 73 2833

    [23]

    Aguado A, Sufirez C, Paniagua M 1995 Chem. Phys. 201 107

    [24]

    Aguado A, Paniagua M 1997 J. Chem. Phys. 106 1013

    [25]

    Yuan M H Zhao G J 2010 Int J Quantum Chem 110 1842

    [26]

    Wang T Yue X F 2011 Chin. Phys. Lett. 28 023101

    [27]

    Jasper A W, Hack M D, Truhlar D G 2002 J. Chem. Phys. 116 8353

    [28]

    Aguado A, Paniagua M 2003 J. Chem. Phys. 119 10088

    [29]

    Aoiz F J, Brouard M, Herrero V J, SaezRabanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [30]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [31]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [32]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [33]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [34]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [35]

    Li W L, Wang M S, Yang C L , Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [36]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [37]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [38]

    Zhang X, Han K L 2006Int. Quantum Chem. 106 1815

    [39]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [40]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

    [41]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [42]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1541
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-11-21
  • 刊出日期:  2013-04-05

Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究

  • 1. 山东师范大学物理与电子科学学院, 济南 250014
    基金项目: 

    国家自然科学基金 (批准号: 11274205, 11274206) 资助的课题.

摘要: 基于2003年Alfredo Aguado 等人构造的新势能面(Aguado和Paniagua. J. Chem. Phys., Vol. 119, No. 19, 2003), 本文结合振动激发和碰撞能两个因素,采用准经典轨线的方法对反应Li+HF(v=0–3) 的k-j' 两矢量相关和k-k'-j'三矢量相关的分布函数及极化微分反应截面进行了详细的立体动力学研究. 结果表明, 描述三原子分子反应的k-j'两矢量相关联的函数P(θr)分布不受振动激发影响, 而碰撞能则对其影响较大. 描述 k-k'-j'三矢量相关的函数P(φr)分布和极化微分反应截面对振动激发较敏感, 同时我们发现碰撞能对P(φr)分布和极化微分反应截面也有较大影响.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回